Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home

Publications Citing Arctic-Boreal Vulnerability Experiment (ABoVE)

The following 190 publications cited the Arctic-Boreal Vulnerability Experiment (ABoVE) project.

YearCitationDataset or Project
2024Bartsch, A., A. Efimova, B. Widhalm, X. Muri, C. von Baeckmann, H. Bergstedt, K. Ermokhina, G. Hugelius, B. Heim, and M. Leibman. 2024. Circumarctic land cover diversity considering wetness gradients. Hydrology and Earth System Sciences. 28(11):2421-2481. https://doi.org/10.5194/hess-28-2421-2024
2024Berner, L.T., K.M. Orndahl, M. Rose, M. Tamstorf, M.F. Arndal, H.D. Alexander, E.R. Humphreys, M.M. Loranty, S.M. Ludwig, J. Nyman, S. Juutinen, M. Aurela, K. Happonen, J. Mikola, M.C. Mack, M.R. Vankoughnett, C.M. Iversen, V.G. Salmon, D. Yang, J. Kumar, P. Grogan, R.K. Danby, N.A. Scott, J. Olofsson, M.B. Siewert, L. Deschamps, E. Lévesque, V. Maire, A. Morneault, G. Gauthier, C. Gignac, S. Boudreau, A. Gaspard, A. Kholodov, M.S. Bret-Harte, H.E. Greaves, D. Walker, F.M. Gregory, A. Michelsen, T. Kumpula, M. Villoslada, H. Ylänne, M. Luoto, T. Virtanen, B.C. Forbes, N. Hölzel, H. Epstein, R.J. Heim, A. Bunn, R.M. Holmes, J.K.Y. Hung, S.M. Natali, A. Virkkala, and S.J. Goetz. 2024. The Arctic Plant Aboveground Biomass Synthesis Dataset. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03139-w
2024Cheng, R. 2024. Solar-Induced Chlorophyll Fluorescence (SIF): Towards a Better Understanding of Vegetation Dynamics and Carbon Uptake in Arctic-Boreal Ecosystems. Current Climate Change Reports. 10(2):13-32. https://doi.org/10.1007/s40641-024-00194-8
2024Dashti, H., M. Chen, W.K. Smith, K. Zhao, and D.J.P. Moore. 2024. Ecosystems Disturbance Recovery: What It Was or What It Could Have Been? Geophysical Research Letters. 51(17). https://doi.org/10.1029/2024GL109219
2024Dashti, H., M. Chen, W.K. Smith, K. Zhao, and D.J.P. Moore. 2024. Ecosystems Disturbance Recovery: What It Was or What It Could Have Been? Geophysical Research Letters. 51(17). https://doi.org/10.1029/2024GL109219
2024Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024
2024Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024
2024Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024
2024Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024
2024Liu, C., J. Chen, W. Zhang, and K. Ungar. 2024. Outdoor Radon Dose Rate in Canada’s Arctic amid Climate Change. Environmental Science & Technology. 58(26):11309-11319. https://doi.org/10.1021/acs.est.4c02723
2024Merchant, M., L. McBlane, and R. Edwards. 2024. Shapley Explainable AI (XAI) to Assess the Potential of Satellite Remote Sensing Data for Estimating Active Layer Thickness (ALT). 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS). 78-82. https://doi.org/10.1109/M2GARSS57310.2024.10537286
2024Miller, E.A., C.A. Baughman, B.M. Jones, and R.R. Jandt. 2024. Biophysical effects of an old tundra fire in the Brooks Range Foothills of Northern Alaska, U.S.A. Polar Science. 39:100984. https://doi.org/10.1016/j.polar.2023.100984
2024Miller, E.A., C.A. Baughman, B.M. Jones, and R.R. Jandt. 2024. Biophysical effects of an old tundra fire in the Brooks Range Foothills of Northern Alaska, U.S.A. Polar Science. 39:100984. https://doi.org/10.1016/j.polar.2023.100984
2024Montesano, P.M., M. Frost, J. Li, M. Carroll, C.S.R. Neigh, M.J. Macander, J.O. Sexton, and G.V. Frost. 2024. A shift in transitional forests of the North American boreal will persist through 2100. Communications Earth & Environment. 5(1). https://doi.org/10.1038/s43247-024-01454-z
2024Pontone, N., K. Millard, D.K. Thompson, L. Guindon, and A. Beaudoin. 2024. A hierarchical, multi?sensor framework for peatland sub?class and vegetation mapping throughout the Canadian boreal forest. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.384
2024Poquérusse, J., C.L. Brown, C. Gaillard, C. Doughty, L. Dalén, A.J. Gallagher, M. Wooller, N. Zimov, G.M. Church, B. Lamm, and E. Hysolli. 2024. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-60442-7
2024Poquérusse, J., C.L. Brown, C. Gaillard, C. Doughty, L. Dalén, A.J. Gallagher, M. Wooller, N. Zimov, G.M. Church, B. Lamm, and E. Hysolli. 2024. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-60442-7
2024Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024
2024Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024
2024Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024
2024Schiks, T.J., B.M. Wotton, and D.L. Martell. 2024. Remote Sensing Active Fire Detection Tools Support Growth Reconstruction for Large Boreal Wildfires. Fire. 7(1):26. https://doi.org/10.3390/fire7010026
2024Touzi, R., Y. Zhang, P. Wilson, B.H. Choe, M.A. Fobert, G. Hong, and M. Moghaddam. 2024. Investigation of Polarimetric L-band ALOS2 and UAVSAR, and P-band AIRMOSS for Permafrost Characterization along the Inuvik-Tuktoyaktuk Highway. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. 2799-2802. https://doi.org/10.1109/IGARSS53475.2024.10641854
2024White, J.C. 2024. Characterizing forest recovery following stand-replacing disturbances in boreal forests: contributions of optical time series and airborne laser scanning data. Silva Fennica. 58(2). https://doi.org/10.14214/sf.23076
2024Xu, Y., Q. Zhuang, B. Zhao, M. Billmire, C. Cook, J. Graham, N.H. French, and R. Prinn. 2024. Impacts of wildfires on boreal forest ecosystem carbon dynamics from 1986 to 2020. Environmental Research Letters. 19(6):064023. https://doi.org/10.1088/1748-9326/ad489a
2024Yu, L., L. Fan, P. Ciais, J. Xiao, F. Frappart, S. Sitch, J. Chen, X. Xiao, R. Fensholt, Z. Chang, H. Fang, X. Li, T. Cui, M. Ma, and J. Wigneron. 2024. Forest degradation contributes more to carbon loss than forest cover loss in North American boreal forests. International Journal of Applied Earth Observation and Geoinformation. 128:103729. https://doi.org/10.1016/j.jag.2024.103729
2024Zhao, Y., K. Bakian-Dogaheh, J. Whitcomb, R.H. Chen, Y. Yi, J.S. Kimball, and M. Moghaddam. 2024. Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling. Environmental Research Letters. 19(7):074025. https://doi.org/10.1088/1748-9326/ad560a
2024Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022
2024Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022
2024Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022
2023Arndt, K.A., J. Hashemi, S.M. Natali, L.D. Schiferl, and A. Virkkala. 2023. Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone. Current Climate Change Reports. 9(2):27-40. https://doi.org/10.1007/s40641-023-00190-4
2023Arndt, K.A., J. Hashemi, S.M. Natali, L.D. Schiferl, and A. Virkkala. 2023. Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone. Current Climate Change Reports. 9(2):27-40. https://doi.org/10.1007/s40641-023-00190-4
2023Bill, K.E., C.M. Dieleman, J.L. Baltzer, G.É. Degré-Timmons, M.C. Mack, N.J. Day, S.G. Cumming, X.J. Walker, and M.R. Turetsky. 2023. Post-fire Recovery of Soil Organic Layer Carbon in Canadian Boreal Forests. Ecosystems. https://doi.org/10.1007/s10021-023-00854-0
2023Chen, D., M. Billmire, C.P. Loughner, A. Bredder, N.H. French, H.C. Kim, and T.V. Loboda. 2023. Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires. Science of The Total Environment. 898:165594. https://doi.org/10.1016/j.scitotenv.2023.165594
2023Chen, D., M. Billmire, C.P. Loughner, A. Bredder, N.H. French, H.C. Kim, and T.V. Loboda. 2023. Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires. Science of The Total Environment. 898:165594. https://doi.org/10.1016/j.scitotenv.2023.165594
2023Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453
2023Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453
2023Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453
2023Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453
2023Clark, J.A., K.D. Tape, L. Baskaran, C. Elder, C. Miller, K. Miner, J.A. O’Donnell, and B.M. Jones. 2023. Do beaver ponds increase methane emissions along Arctic tundra streams? Environmental Research Letters. 18(7):075004. https://doi.org/10.1088/1748-9326/acde8e
2023Frappier, R., D. Lacelle, and R.H. Fraser. 2023. Landscape changes in the Tombstone Territorial Park region (central Yukon, Canada) from multilevel remote sensing analysis. Arctic Science. https://doi.org/10.1139/as-2022-0037
2023Guddeti, S.S., R.M. Kurakalva, and S. Karuppannan. 2023. Identification of vulnerable areas using geospatial technologies in the lower Manair River basin of Telangana, Southern India. Geomatics, Natural Hazards and Risk. 15(1). https://doi.org/10.1080/19475705.2023.2296379
2023Hansen, W.D., A. Foster, B. Gaglioti, R. Seidl, and W. Rammer. 2023. The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0. Geoscientific Model Development. 16(7):2011-2036. https://doi.org/10.5194/gmd-16-2011-2023
2023Huemmrich, K.F., J. Gamon, P. Campbell, M. Mora, S. Vargas Z, B. Almanza, and C. Tweedie. 2023. 20 years of change in tundra NDVI from coupled field and satellite observations. Environmental Research Letters. 18(9):094022. https://doi.org/10.1088/1748-9326/acee17
2023Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288
2023Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288
2023Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288
2023Ludwig, S.M., S.M. Natali, J.D. Schade, M. Powell, G. Fiske, L.D. Schiferl, and R. Commane. 2023. Scaling waterbody carbon dioxide and methane fluxes in the arctic using an integrated terrestrial-aquatic approach. Environmental Research Letters. 18(6):064019. https://doi.org/10.1088/1748-9326/acd467
2023Ludwig, S.M., S.M. Natali, J.D. Schade, M. Powell, G. Fiske, L.D. Schiferl, and R. Commane. 2023. Scaling waterbody carbon dioxide and methane fluxes in the arctic using an integrated terrestrial-aquatic approach. Environmental Research Letters. 18(6):064019. https://doi.org/10.1088/1748-9326/acd467
2023Massey, R., B.M. Rogers, L.T. Berner, S. Cooperdock, M.C. Mack, X.J. Walker, and S.J. Goetz. 2023. Forest composition change and biophysical climate feedbacks across boreal North America. Nature Climate Change. 13(12):1368-1375. https://doi.org/10.1038/s41558-023-01851-w
2023Miller, E.A., B.M. Jones, C.A. Baughman, R.R. Jandt, J.L. Jenkins, and D.A. Yokel. 2023. Unrecorded Tundra Fires of the Arctic Slope, Alaska USA. Fire. 6(3):101. https://doi.org/10.3390/fire6030101
2023Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab
2023Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab
2023Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab
2023Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023
2023Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023
2023Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023
2023Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023
2023Ouerfelli, M., M. Tamaazousti, and V. Rivasseau. 2023. Selective multiple power iteration: from tensor PCA to gradient-based exploration of landscapes. The European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00844-2
2023Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023
2023Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023
2023Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023
2023Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023
2023Smith, L.C., J.V. Fayne, B. Wang, E.D. Kyzivat, C.J. Gleason, M.E. Harlan, T. Langhorst, D. Feng, T.M. Pavelsky, and D.L. Peters. 2023. Peace-Athabasca Delta water surface elevations and slopes mapped from AirSWOT Ka-band InSAR. Remote Sensing Letters. 14(12):1238-1250. https://doi.org/10.1080/2150704X.2023.2280464
2023Smith, L.C., J.V. Fayne, B. Wang, E.D. Kyzivat, C.J. Gleason, M.E. Harlan, T. Langhorst, D. Feng, T.M. Pavelsky, and D.L. Peters. 2023. Peace-Athabasca Delta water surface elevations and slopes mapped from AirSWOT Ka-band InSAR. Remote Sensing Letters. 14(12):1238-1250. https://doi.org/10.1080/2150704X.2023.2280464
2023Sullender, B.K., C.X. Cunningham, J.D. Lundquist, and L.R. Prugh. 2023. Defining the danger zone: critical snow properties for predator–prey interactions. Oikos. https://doi.org/10.1111/oik.09925
2023Wang, L., V.K. Arora, P. Bartlett, E. Chan, and S.R. Curasi. 2023. Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model. Biogeosciences. 20(12):2265-2282. https://doi.org/10.5194/bg-20-2265-2023
2023Watts, J.D., M. Farina, J.S. Kimball, L.D. Schiferl, Z. Liu, K.A. Arndt, D. Zona, A. Ballantyne, E.S. Euskirchen, F.W. Parmentier, M. Helbig, O. Sonnentag, T. Tagesson, J. Rinne, H. Ikawa, M. Ueyama, H. Kobayashi, T. Sachs, D.F. Nadeau, J. Kochendorfer, M. Jackowicz?Korczynski, A. Virkkala, M. Aurela, R. Commane, B. Byrne, L. Birch, M.S. Johnson, N. Madani, B. Rogers, J. Du, A. Endsley, K. Savage, B. Poulter, Z. Zhang, L.M. Bruhwiler, C.E. Miller, S. Goetz, and W.C. Oechel. 2023. Carbon uptake in Eurasian boreal forests dominates the high?latitude net ecosystem carbon budget. Global Change Biology. 29(7):1870-1889. https://doi.org/10.1111/gcb.16553
2023Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f
2023Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f
2023Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f
2023White, J.C., T. Hermosilla, and M.A. Wulder. 2023. Pre-fire measures of boreal forest structure and composition inform interpretation of post-fire spectral recovery rates. Forest Ecology and Management. 537:120948. https://doi.org/10.1016/j.foreco.2023.120948
2023Yang, D., B.D. Morrison, W. Hanston, A. McMahon, L. Baskaran, D.J. Hayes, C.E. Miller, and S.P. Serbin. 2023. Integrating very-high-resolution UAS data and airborne imaging spectroscopy to map the fractional composition of Arctic plant functional types in Western Alaska. Remote Sensing of Environment. 286:113430. https://doi.org/10.1016/j.rse.2022.113430
2023Yoseph, E., E. Hoy, C.D. Elder, S.M. Ludwig, D.R. Thompson, and C.E. Miller. 2023. Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA. Environmental Research Letters. 18(10):104042. https://doi.org/10.1088/1748-9326/acf50b
2023Yoseph, E., E. Hoy, C.D. Elder, S.M. Ludwig, D.R. Thompson, and C.E. Miller. 2023. Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA. Environmental Research Letters. 18(10):104042. https://doi.org/10.1088/1748-9326/acf50b
2023Zhao, B. and Q. Zhuang. 2023. Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis. Biogeosciences. 20(1):251-270. https://doi.org/10.5194/bg-20-251-2023
2023Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205
2023Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205
2023Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205
2022Bakian-Dogaheh, K., Y. Zhao, and M. Moghaddam. 2022. Coupled hydrologic-electromagnetic approach for mapping water and carbon characteristics of permafrost active layer. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS46834.2022.9883115
2022Chandel, A., W. Sarwat, A. Najah, S. Dhanagare, and M. Agarwala. 2022. Evaluating methods to map burned area at 30-meter resolution in forests and agricultural areas of Central India. Frontiers in Forests and Global Change. 5. https://doi.org/10.3389/ffgc.2022.933807
2022Cheng, R., T.S. Magney, E.L. Orcutt, Z. Pierrat, P. Köhler, D.R. Bowling, M.S. Bret-Harte, E.S. Euskirchen, M. Jung, H. Kobayashi, A.V. Rocha, O. Sonnentag, J. Stutz, S. Walther, D. Zona, and C. Frankenberg. 2022. Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence. Environmental Research Letters. 17(11):115009. https://doi.org/10.1088/1748-9326/ac9dae
2022Day, N.J., J.F. Johnstone, K.A. Reid, S.G. Cumming, M.C. Mack, M.R. Turetsky, X.J. Walker, and J.L. Baltzer. 2022. Material Legacies and Environmental Constraints Underlie Fire Resilience of a Dominant Boreal Forest Type. Ecosystems. https://doi.org/10.1007/s10021-022-00772-7
2022Fuller, A., K. Millard, and J.R. Green. 2022. SatViT: Pretraining Transformers for Earth Observation. IEEE Geoscience and Remote Sensing Letters. 19:01-05. https://doi.org/10.1109/LGRS.2022.3201489
2022Fuller, A., K. Millard, and J.R. Green. 2022. SatViT: Pretraining Transformers for Earth Observation. IEEE Geoscience and Remote Sensing Letters. 19:01-05. https://doi.org/10.1109/LGRS.2022.3201489
2022Hessilt, T.D., J.T. Abatzoglou, Y. Chen, J.T. Randerson, R.C. Scholten, G. van der Werf, and S. Veraverbeke. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters. 17(5):54008. https://doi.org/10.1088/1748-9326/ac6311
2022Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620
2022Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620
2022Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620
2022Khan, S., A. Farooqui, U.K. Shukla, K. Grøsfjeld, J. Knies, and V. Prasad. 2022. Late Pliocene continental climate and vegetation variability in the Arctic-Atlantic gateway region prior to the intensification of Northern Hemisphere glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology. 586:110746. https://doi.org/10.1016/j.palaeo.2021.110746
2022Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965
2022Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965
2022Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965
2022Millard, K., S. Darling, N. Pelletier, and S. Schultz. 2022. Seasonally-decomposed Sentinel-1 backscatter time-series are useful indicators of peatland wildfire vulnerability. Remote Sensing of Environment. 283:113329. https://doi.org/10.1016/j.rse.2022.113329
2022Millard, K., S. Darling, N. Pelletier, and S. Schultz. 2022. Seasonally-decomposed Sentinel-1 backscatter time-series are useful indicators of peatland wildfire vulnerability. Remote Sensing of Environment. 283:113329. https://doi.org/10.1016/j.rse.2022.113329
2022Phillips, C.A., B.M. Rogers, M. Elder, S. Cooperdock, M. Moubarak, J.T. Randerson, and P.C. Frumhoff. 2022. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances. 8(17). https://doi.org/10.1126/sciadv.abl7161
2022Sweeney, C., A. Chatterjee, S. Wolter, K. McKain, R. Bogue, S. Conley, T. Newberger, L. Hu, L. Ott, B. Poulter, L. Schiferl, B. Weir, Z. Zhang, and C.E. Miller. 2022. Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics. 22(9):6347-6364. https://doi.org/10.5194/acp-22-6347-2022
2022Sweeney, C., A. Chatterjee, S. Wolter, K. McKain, R. Bogue, S. Conley, T. Newberger, L. Hu, L. Ott, B. Poulter, L. Schiferl, B. Weir, Z. Zhang, and C.E. Miller. 2022. Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics. 22(9):6347-6364. https://doi.org/10.5194/acp-22-6347-2022
2022Turner, K.W., B.B. Wolfe, and I. McDonald. 2022. Monitoring 13 years of drastic catchment change and the hydroecological responses of a drained thermokarst lake. Arctic Science. https://doi.org/10.1139/as-2020-0022
2022van Geffen, F., B. Heim, F. Brieger, R. Geng, I.A. Shevtsova, L. Schulte, S.M. Stuenzi, N. Bernhardt, E.I. Troeva, L.A. Pestryakova, E.S. Zakharov, B. Pflug, U. Herzschuh, and S. Kruse. 2022. SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches. Earth System Science Data. 14(11):4967-4994. https://doi.org/10.5194/essd-14-4967-2022
2022van Geffen, F., B. Heim, F. Brieger, R. Geng, I.A. Shevtsova, L. Schulte, S.M. Stuenzi, N. Bernhardt, E.I. Troeva, L.A. Pestryakova, E.S. Zakharov, B. Pflug, U. Herzschuh, and S. Kruse. 2022. SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches. Earth System Science Data. 14(11):4967-4994. https://doi.org/10.5194/essd-14-4967-2022
2022Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022
2022Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022
2022Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022
2022Walker, D.A., M.K. Raynolds, M.Z. Kanevskiy, Y.S. Shur, V.E. Romanovsky, B.M. Jones, M. Buchhorn, M.T. Jorgenson, J. Šibík, A.L. Breen, A. Kade, E. Watson-Cook, G. Matyshak, H. Bergstedt, A.K. Liljedahl, R.P. Daanen, B. Connor, D. Nicolsky, and J.L. Peirce. 2022. Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska. Arctic Science. https://doi.org/10.1139/as-2021-0014
2022Whitman, E., S.A. Parks, L.M. Holsinger, and M. Parisien. 2022. Climate-induced fire regime amplification in Alberta, Canada. Environmental Research Letters. 17(5):055003. https://doi.org/10.1088/1748-9326/ac60d6
2022Yang, D., B.D. Morrison, K.J. Davidson, J. Lamour, Q. Li, P.R. Nelson, W. Hantson, D.J. Hayes, T.L. Swetnam, A. McMahon, J. Anderson, K.S. Ely, A. Rogers, and S.P. Serbin. 2022. Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate. Journal of Ecology. https://doi.org/10.1111/1365-2745.13976
2021Baltzer, J.L., N.J. Day, X.J. Walker, D. Greene, M.C. Mack, H.D. Alexander, D. Arseneault, J. Barnes, Y. Bergeron, Y. Boucher, L. Bourgeau-Chavez, C.D. Brown, S. Carriere, B.K. Howard, S. Gauthier, M.A. Parisien, K.A. Reid, B.M. Rogers, C. Roland, L. Sirois, S. Stehn, D.K. Thompson, M.R. Turetsky, S. Veraverbeke, E. Whitman, J. Yang, and J.F. Johnstone. 2021. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences. 118(45):. https://doi.org/10.1073/pnas.2024872118
2021Clayton, L.K., K. Schaefer, M.J. Battaglia, L. Bourgeau-Chavez, J. Chen, R.H. Chen, A. Chen, K. Bakian-Dogaheh, S. Grelik, E. Jafarov, L. Liu, R.J. Michaelides, M. Moghaddam, A.D. Parsekian, A.V. Rocha, S.R. Schaefer, T. Sullivan, A. Tabatabaeenejad, K. Wang, C.J. Wilson, H.A. Zebker, T. Zhang, and Y. Zhao. 2021. Active layer thickness as a function of soil water content. Environmental Research Letters. 16(5):055028. https://doi.org/10.1088/1748-9326/abfa4c
2021Douglas, T.A. and C. Zhang. 2021. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environmental Research Letters. 16(6):065014. https://doi.org/10.1088/1748-9326/ac04d8
2021Douglas, T.A. and C. Zhang. 2021. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environmental Research Letters. 16(6):065014. https://doi.org/10.1088/1748-9326/ac04d8
2021Frost, G.V., U.S. Bhatt, M.J. Macander, A.S. Hendricks, and M.T. Jorgenson. 2021. Is Alaska's Yukon-Kuskokwim Delta Greening or Browning? Resolving Mixed Signals of Tundra Vegetation Dynamics and Drivers in the Maritime Arctic. Earth Interactions. 25(1):76-93. https://doi.org/10.1175/EI-D-20-0025.1
2021Griffin, K.L., S.C. Schmiege, S.G. Bruner, N.T. Boelman, L.A. Vierling, and J.U.H. Eitel. 2021. High Leaf Respiration Rates May Limit the Success of White Spruce Saplings Growing in the Kampfzone at the Arctic Treeline. Frontiers in Plant Science. 12. https://doi.org/10.3389/fpls.2021.746464
2021Kim, J., Y. Kim, D. Zona, W. Oechel, S.J. Park, B.Y. Lee, Y. Yi, A. Erb, and C.L. Schaaf. 2021. Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska. Nature Communications. 12(1):. https://doi.org/10.1038/s41467-021-26876-7
2021McCarty, J.L., J. Aalto, V.V. Paunu, S.R. Arnold, S. Eckhardt, Z. Klimont, J.J. Fain, N. Evangeliou, A. Venalainen, N.M. Tchebakova, E.I. Parfenova, K. Kupiainen, A.J. Soja, L. Huang, and S. Wilson. 2021. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences. 18(18):5053-5083. https://doi.org/10.5194/bg-18-5053-2021
2021Ruan, Y., X. Zhang, Q. Xin, Y. Sun, Z. Ao, and X. Jiang. 2021. A method for quality management of vegetation phenophases derived from satellite remote sensing data. International Journal of Remote Sensing. 42(15):5811-5830. https://doi.org/10.1080/01431161.2021.1931534
2021Scholten, R.C., R. Jandt, E.A. Miller, B.M. Rogers, and S. Veraverbeke. 2021. Overwintering fires in boreal forests. Nature. 593(7859):399-404. https://doi.org/10.1038/s41586-021-03437-y
2021Severson, J.P., H.E. Johnson, S.M. Arthur, W.B. Leacock, and M.J. Suitor. 2021. Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future. Global Change Biology. 27(19):4546-4563. https://doi.org/10.1111/gcb.15682
2021Shevtsova, I., U. Herzschuh, B. Heim, L. Schulte, S. Stunzi, L.A. Pestryakova, E.S. Zakharov, and S. Kruse. 2021. Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data. Biogeosciences. 18(11):3343-3366. https://doi.org/10.5194/bg-18-3343-2021
2021Wang, J.A., A. Baccini, M. Farina, J.T. Randerson, and M.A. Friedl. 2021. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change. 11(5):435-441. https://doi.org/10.1038/s41558-021-01027-4
2021Wang, J.A., A. Baccini, M. Farina, J.T. Randerson, and M.A. Friedl. 2021. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change. 11(5):435-441. https://doi.org/10.1038/s41558-021-01027-4
2021Watts, J.D., S.M. Natali, C. Minions, D. Risk, K. Arndt, D. Zona, E.S. Euskirchen, A.V. Rocha, O. Sonnentag, M. Helbig, A. Kalhori, W. Oechel, H. Ikawa, M. Ueyama, R. Suzuki, H. Kobayashi, G. Celis, E.A.G. Schuur, E. Humphreys, Y. Kim, B.Y. Lee, S. Goetz, N. Madani, L.D. Schiferl, R. Commane, J.S. Kimball, Z. Liu, M.S. Torn, S. Potter, J.A. Wang, M.T. Jorgenson, J. Xiao, X. Li, and C. Edgar. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters. 16(8):084051. https://doi.org/10.1088/1748-9326/ac1222
2020Beamish, A., M.K. Raynolds, H. Epstein, G.V. Frost, M.J. Macander, H. Bergstedt, A. Bartsch, S. Kruse, V. Miles, C.M. Tanis, B. Heim, M. Fuchs, S. Chabrillat, I. Shevtsova, M. Verdonen, and J. Wagner. 2020. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment. 246:111872. https://doi.org/10.1016/j.rse.2020.111872
2020Brown, D.R.N., Brinkman, T.J., Bolton, W.R. et al.Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Climate Change. https://doi.org/10.1007/s10584-020-02748-9
2020Chen, D., T.V. Loboda, and J.V. Hall. 2020. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011
2020Chen, D., T.V. Loboda, and J.V. Hall. 2020. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011
2020Day, N.J., A.L. White, J.F. Johnstone, G.E. Degre-Timmons, S.G. Cumming, M.C. Mack, M.R. Turetsky, X.J. Walker, and J.L. Baltzer. 2020. Fire characteristics and environmental conditions shape plant communities via regeneration strategy. Ecography. https://doi.org/10.1111/ecog.05211
2020Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158
2020Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158
2020Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158
2020Dong Chen, Tatiana V. Loboda, Joanne V. HallA systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems,. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011
2020Engram, M., K.M. Walter Anthony, T. Sachs, K. Kohnert, A. Serafimovich, G. Grosse, and F.J. Meyer. 2020. Remote sensing northern lake methane ebullition. Nature Climate Change. 10(6):511-517. https://doi.org/10.1038/s41558-020-0762-8
2020French, N.H.F., J. Graham, E. Whitman, and L.L. Bourgeau-Chavez. 2020. Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF20008
2020French, N.H.F., J. Graham, E. Whitman, and L.L. Bourgeau-Chavez. 2020. Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF20008
2020Frost, G.V., R.A. Loehman, L.B. Saperstein, M.J. Macander, P.R. Nelson, D.P. Paradis, and S.M. Natali. 2020. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environmental Research Letters. 15(2):025003. https://doi.org/10.1088/1748-9326/ab5f49
2020Guindon, L., S. Gauthier, F. Manka, M.A. Parisien, E. Whitman, P. Bernier, A. Beaudoin, P. Villemaire, and R. Skakun. 2020. Trends in wildfire burn severity across Canada, 1985 to 2015. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2020-0353
2020Huntzinger, D.N., K. Schaefer, C. Schwalm, J.B. Fisher, D. Hayes, E. Stofferahn, J. Carey, A.M. Michalak, Y. Wei, A.K. Jain, H. Kolus, J. Mao, B. Poulter, X. Shi, J. Tang, and H. Tian. 2020. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters. 15(2):025005. https://doi.org/10.1088/1748-9326/ab6784
2020Lecigne, B., J.U.H. Eitel, and J.L. Rachlow. 2020. viewshed3d : An r package for quantifying 3D visibility using terrestrial lidar data . Methods in Ecology and Evolution. 11(6):733-738. https://doi.org/10.1111/2041-210X.13385
2020Maguire, A.J., J.U.H. Eitel, K.L. Griffin, T.S. Magney, R.A. Long, L.A. Vierling, S.C. Schmiege, J.S. Jennewein, W.A. Weygint, N.T. Boelman, and S.G. Bruner. 2020. On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf Canopies. Geophysical Research Letters. 47(9):. https://doi.org/10.1029/2020GL087858
2020Mahoney, P.J., K. Joly, B.L. Borg, M.S. Sorum, T.A. Rinaldi, D. Saalfeld, H. Golden, A.D.M. Latham, A.P. Kelly, B. Mangipane, C.L. Koizumi, L. Neufeld, M. Hebblewhite, N.T. Boelman, and L.R. Prugh. 2020. Denning phenology and reproductive success of wolves in response to climate signals. Environmental Research Letters. 15(12):125001. https://doi.org/10.1088/1748-9326/abc0ba
2020Pan, C.G., P.B. Kirchner, J.S. Kimball, and J. Du. 2020. A Long-Term Passive Microwave Snowoff Record for the Alaska Region 1988-2016. Remote Sensing. 12(1):153. https://doi.org/10.3390/rs12010153
2020Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278
2020Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278
2020Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278
2020Potter, C. 2020. Snowmelt timing impacts on growing season phenology in the northern range of Yellowstone National Park estimated from MODIS satellite data. Landscape Ecology. 35(2):373-388. https://doi.org/10.1007/s10980-019-00951-3
2020Smith, C.W., S.K. Panda, U.S. Bhatt, F.J. Meyer, and R.W. Haan. 2020. Improved Vegetation and Wildfire Fuel Type Mapping Using NASA AVIRIS-NG Hyperspectral Data, Interior AK. 1307-1310. https://doi.org/10.1109/IGARSS39084.2020.9324136
2020Walker, X.J., B.M. Rogers, S. Veraverbeke, J.F. Johnstone, J.L. Baltzer, K. Barrett, L. Bourgeau-Chavez, N.J. Day, W.J. de Groot, C.M. Dieleman, S. Goetz, E. Hoy, L.K. Jenkins, E.S. Kane, M.A. Parisien, S. Potter, E.A.G. Schuur, M. Turetsky, E. Whitman, and M.C. Mack. 2020. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nature Climate Change. 10(12):1130-1136. https://doi.org/10.1038/s41558-020-00920-8
2020Wang, J.A., D. Sulla-Menashe, C.E. Woodcock, O. Sonnentag, R.F. Keeling, and M.A. Friedl. 2020. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology. 26(2):807-822. https://doi.org/10.1111/gcb.14804
2019Bevington, A.R., H.E. Gleason, V.N. Foord, W.C. Floyd, and H.P. Griesbauer. 2019. Regional influence of ocean-atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada. The Cryosphere. 13(10):2693-2712. https://doi.org/10.5194/tc-13-2693-2019
2019Chen, H., A. Beaudoin, D.A. Hill, S.R. Cloude, R.S. Skakun, and M. Marchand. 2019. Mapping Forest Height from TanDEM-X Interferometric Coherence Data in Northwest Territories, Canada. Canadian Journal of Remote Sensing. 45(3-4):290-307. https://doi.org/10.1080/07038992.2019.1604119
2019Chevallier, F., M. Remaud, C.W. O&apos;Dell, D. Baker, P. Peylin, and A. Cozic. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics. 19(22):14233-14251. https://doi.org/10.5194/acp-19-14233-2019
2019Chevallier, F., M. Remaud, C.W. O&apos;Dell, D. Baker, P. Peylin, and A. Cozic. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics. 19(22):14233-14251. https://doi.org/10.5194/acp-19-14233-2019
2019Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584
2019Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584
2019He, J., T.V. Loboda, L. Jenkins, and D. Chen. 2019. Mapping fractional cover of major fuel type components across Alaskan tundra. Remote Sensing of Environment. 232:111324. https://doi.org/10.1016/j.rse.2019.111324
2019He, J., T.V. Loboda, L. Jenkins, and D. Chen. 2019. Mapping fractional cover of major fuel type components across Alaskan tundra. Remote Sensing of Environment. 232:111324. https://doi.org/10.1016/j.rse.2019.111324
2019Jenkins, L.K., T. Barry, K.R. Bosse, W.S. Currie, T. Christensen, S. Longan, R.A. Shuchman, D. Tanzer, and J.J. Taylor. 2019. Satellite-based decadal change assessments of pan-Arctic environments. Ambio. 49(3):820-832. https://doi.org/10.1007/s13280-019-01249-z
2019Klene, A.E. and F.E. Nelson. 2019. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Peninsula, Northern Alaska. Annals of the American Association of Geographers. 109(5):1394-1414. https://doi.org/10.1080/24694452.2018.1549972
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Natali, S.M., J.D. Watts, B.M. Rogers, S. Potter, S.M. Ludwig, A.K. Selbmann, P.F. Sullivan, B.W. Abbott, K.A. Arndt, L. Birch, M.P. Bjorkman, A.A. Bloom, G. Celis, T.R. Christensen, C.T. Christiansen, R. Commane, E.J. Cooper, P. Crill, C. Czimczik, S. Davydov, J. Du, J.E. Egan, B. Elberling, E.S. Euskirchen, T. Friborg, H. Genet, M. Gockede, J.P. Goodrich, P. Grogan, M. Helbig, E.E. Jafarov, J.D. Jastrow, A.A.M. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M.J. Lara, K.S. Larsen, B.Y. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A.D. McGuire, A. Michelsen, C. Minions, W.C. Oechel, D. Olefeldt, F.J.W. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N.M. Schmidt, E.A.G. Schuur, P.R. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C.C. Treat, M.P. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. 9(11):852-857. https://doi.org/10.1038/s41558-019-0592-8
2019Natali, S.M., J.D. Watts, B.M. Rogers, S. Potter, S.M. Ludwig, A.K. Selbmann, P.F. Sullivan, B.W. Abbott, K.A. Arndt, L. Birch, M.P. Bjorkman, A.A. Bloom, G. Celis, T.R. Christensen, C.T. Christiansen, R. Commane, E.J. Cooper, P. Crill, C. Czimczik, S. Davydov, J. Du, J.E. Egan, B. Elberling, E.S. Euskirchen, T. Friborg, H. Genet, M. Gockede, J.P. Goodrich, P. Grogan, M. Helbig, E.E. Jafarov, J.D. Jastrow, A.A.M. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M.J. Lara, K.S. Larsen, B.Y. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A.D. McGuire, A. Michelsen, C. Minions, W.C. Oechel, D. Olefeldt, F.J.W. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N.M. Schmidt, E.A.G. Schuur, P.R. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C.C. Treat, M.P. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. 9(11):852-857. https://doi.org/10.1038/s41558-019-0592-8
2019Pitcher, L.H., T.M. Pavelsky, L.C. Smith, D.K. Moller, E.H. Altenau, G.H. Allen, C. Lion, D. Butman, S.W. Cooley, J.V. Fayne, and M. Bertram. 2019. AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska. Water Resources Research. 55(2):937-953. https://doi.org/10.1029/2018WR023274
2019Potter, S., K. Solvik, A. Erb, S.J. Goetz, J.F. Johnstone, M.C. Mack, J.T. Randerson, M.O. Roman, C.L. Schaaf, M.R. Turetsky, S. Veraverbeke, X.J. Walker, Z. Wang, R. Massey, and B.M. Rogers. 2019. Climate change decreases the cooling effect from postfire albedo in boreal North America. Global Change Biology. https://doi.org/10.1111/gcb.14888
2019Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y
2019Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y
2019Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429
2019Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429
2019Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429
2018Berner, L.T., P. Jantz, K.D. Tape, and S.J. Goetz. 2018. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters. 13(3):035002. https://doi.org/10.1088/1748-9326/aaaa9a
2018Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.F. Lamarque. 2018. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques. 11(5):2653-2668. https://doi.org/10.5194/amt-11-2653-2018
2018Walker, X.J., B.M. Rogers, J.L. Baltzer, S.G. Cumming, N.J. Day, S.J. Goetz, J.F. Johnstone, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2018. Cross-scale controls on carbon emissions from boreal forest megafires. Global Change Biology. 24(9):4251-4265. https://doi.org/10.1111/gcb.14287
2017Carroll, M. and T. Loboda. 2017. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing. 9(5):497. https://doi.org/10.3390/rs9050497
2017Fraser, R., J. van der Sluijs, and R. Hall. 2017. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. Remote Sensing. 9(3):279. https://doi.org/10.3390/rs9030279
2017Jafarov, E.E., A.D. Parsekian, K. Schaefer, L. Liu, A.C. Chen, S.K. Panda, and T. Zhang. 2017. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal. 4(2):72-79. https://doi.org/10.1002/gdj3.49
2017Veraverbeke, S., B.M. Rogers, M.L. Goulden, R.R. Jandt, C.E. Miller, E.B. Wiggins, and J.T. Randerson. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change. 7(7):529-534. https://doi.org/10.1038/nclimate3329
2017Wei, Y., Z. Wei, and S. Vannan2017. Facilitate Visualization and Distribution of NASA?s Environmental Science Data through Open Standards and Open Source Software for Geospatial. Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings. 17:.
2016Carroll, M., M. Wooten, C. DiMiceli, R. Sohlberg, and M. Kelly. 2016. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011. Remote Sensing. 8(8):622. https://doi.org/10.3390/rs8080622
2016Chen, A., A.D. Parsekian, K. Schaefer, E. Jafarov, S. Panda, L. Liu, T. Zhang, and H. Zebker. 2016. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. GEOPHYSICS. 81(2):H9-H19. https://doi.org/10.1190/geo2015-0124.1
2024Feng, T., L. Duncanson, S. Hancock, P. Montesano, S. Skakun, M.A. Wulder, J.C. White, D. Minor, and T. Loboda. 2024. Characterizing Fire-Induced Forest Structure and Aboveground Biomass Changes in Boreal Forests Using Multitemporal Lidar and Landsat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17:10108-10125. https://doi.org/10.1109/JSTARS.2024.3400218
2021Rawlins, M.A. 2021. Increasing freshwater and dissolved organic carbon flows to Northwest Alaska's Elson lagoon. Environmental Research Letters. 16(10):105014. https://doi.org/10.1088/1748-9326/ac2288
2021Tao, J., Q. Zhu, W.J. Riley, and R.B. Neumann. 2021. Warm-season net CO2 uptake outweighs cold-season emissions over Alaskan North Slope tundra under current and RCP8.5 climate. Environmental Research Letters. 16(5):055012. https://doi.org/10.1088/1748-9326/abf6f5
2020Mahoney, P.J., K. Joly, B.L. Borg, M.S. Sorum, T.A. Rinaldi, D. Saalfeld, H. Golden, A.D.M. Latham, A.P. Kelly, B. Mangipane, C.L. Koizumi, L. Neufeld, M. Hebblewhite, N.T. Boelman, and L.R. Prugh. 2020. Denning phenology and reproductive success of wolves in response to climate signals. Environmental Research Letters. 15(12):125001. https://doi.org/10.1088/1748-9326/abc0ba
2019Foster, A.C., A.H. Armstrong, J.K. Shuman, H.H. Shugart, B.M. Rogers, M.C. Mack, S.J. Goetz, and K.J. Ranson. 2019. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling. 409:108765. https://doi.org/10.1016/j.ecolmodel.2019.108765
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Stofferahn, E., J.B. Fisher, D.J. Hayes, C.R. Schwalm, D.N. Huntzinger, W. Hantson, B. Poulter, and Z. Zhang. 2019. The Arctic-Boreal vulnerability experiment model benchmarking system. Environmental Research Letters. 14(5):055002. https://doi.org/10.1088/1748-9326/ab10fa
2018Meddens, A.J., L.A. Vierling, J.U. Eitel, J.S. Jennewein, J.C. White, and M.A. Wulder. 2018. Developing 5?m resolution canopy height and digital terrain models from WorldView and ArcticDEM data. Remote Sensing of Environment. 218:174-188. https://doi.org/10.1016/j.rse.2018.09.010
2018Pan, C.G., P.B. Kirchner, J.S. Kimball, Y. Kim, and J. Du. 2018. Rain-on-snow events in Alaska, their frequency and distribution from satellite observations. Environmental Research Letters. 13(7):075004. https://doi.org/10.1088/1748-9326/aac9d3