The following 190 publications cited the Arctic-Boreal Vulnerability Experiment (ABoVE) project.
Year | Citation | Dataset or Project |
---|---|---|
2024 | Bartsch, A., A. Efimova, B. Widhalm, X. Muri, C. von Baeckmann, H. Bergstedt, K. Ermokhina, G. Hugelius, B. Heim, and M. Leibman. 2024. Circumarctic land cover diversity considering wetness gradients. Hydrology and Earth System Sciences. 28(11):2421-2481. https://doi.org/10.5194/hess-28-2421-2024 | Land Cover and Ecosystem Map Collection for Northern Alaska |
2024 | Berner, L.T., K.M. Orndahl, M. Rose, M. Tamstorf, M.F. Arndal, H.D. Alexander, E.R. Humphreys, M.M. Loranty, S.M. Ludwig, J. Nyman, S. Juutinen, M. Aurela, K. Happonen, J. Mikola, M.C. Mack, M.R. Vankoughnett, C.M. Iversen, V.G. Salmon, D. Yang, J. Kumar, P. Grogan, R.K. Danby, N.A. Scott, J. Olofsson, M.B. Siewert, L. Deschamps, E. Lévesque, V. Maire, A. Morneault, G. Gauthier, C. Gignac, S. Boudreau, A. Gaspard, A. Kholodov, M.S. Bret-Harte, H.E. Greaves, D. Walker, F.M. Gregory, A. Michelsen, T. Kumpula, M. Villoslada, H. Ylänne, M. Luoto, T. Virtanen, B.C. Forbes, N. Hölzel, H. Epstein, R.J. Heim, A. Bunn, R.M. Holmes, J.K.Y. Hung, S.M. Natali, A. Virkkala, and S.J. Goetz. 2024. The Arctic Plant Aboveground Biomass Synthesis Dataset. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03139-w | High-Resolution Shrub Biomass and Uncertainty Maps, Toolik Lake Area, Alaska, 2013 |
2024 | Cheng, R. 2024. Solar-Induced Chlorophyll Fluorescence (SIF): Towards a Better Understanding of Vegetation Dynamics and Carbon Uptake in Arctic-Boreal Ecosystems. Current Climate Change Reports. 10(2):13-32. https://doi.org/10.1007/s40641-024-00194-8 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2024 | Dashti, H., M. Chen, W.K. Smith, K. Zhao, and D.J.P. Moore. 2024. Ecosystems Disturbance Recovery: What It Was or What It Could Have Been? Geophysical Research Letters. 51(17). https://doi.org/10.1029/2024GL109219 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2024 | Dashti, H., M. Chen, W.K. Smith, K. Zhao, and D.J.P. Moore. 2024. Ecosystems Disturbance Recovery: What It Was or What It Could Have Been? Geophysical Research Letters. 51(17). https://doi.org/10.1029/2024GL109219 | ABoVE: Annual Phenology Derived from Landsat across the ABoVE Core Domain, 1984-2014 |
2024 | Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024 | ABoVE: Last Day of Spring Snow, Alaska, USA, and Yukon Territory, Canada, 2000-2016 |
2024 | Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024 | ABoVE: Ignitions, Burned Area, and Emissions of Fires in AK, YT, and NWT, 2001-2018 |
2024 | Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024 | ABoVE: Burned Area, Depth, and Combustion for Alaska and Canada, 2001-2019 |
2024 | Hessilt, T.D., B.M. Rogers, R.C. Scholten, S. Potter, T.A.J. Janssen, and S. Veraverbeke. 2024. Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America. Biogeosciences. 21(1):109-129. https://doi.org/10.5194/bg-21-109-2024 | ABoVE: Ignitions of ABoVE-FED Fires in Alaska and Canada |
2024 | Liu, C., J. Chen, W. Zhang, and K. Ungar. 2024. Outdoor Radon Dose Rate in Canada’s Arctic amid Climate Change. Environmental Science & Technology. 58(26):11309-11319. https://doi.org/10.1021/acs.est.4c02723 | ABoVE: Soil Moisture and Active Layer Thickness in Alaska and NWT, Canada, 2008-2020 |
2024 | Merchant, M., L. McBlane, and R. Edwards. 2024. Shapley Explainable AI (XAI) to Assess the Potential of Satellite Remote Sensing Data for Estimating Active Layer Thickness (ALT). 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS). 78-82. https://doi.org/10.1109/M2GARSS57310.2024.10537286 | ABoVE: Active Layer Thickness from Airborne L- and P- band SAR, Alaska, 2017, Ver. 3 |
2024 | Miller, E.A., C.A. Baughman, B.M. Jones, and R.R. Jandt. 2024. Biophysical effects of an old tundra fire in the Brooks Range Foothills of Northern Alaska, U.S.A. Polar Science. 39:100984. https://doi.org/10.1016/j.polar.2023.100984 | Circumpolar Arctic Vegetation, Geobotanical, Physiographic Maps, 1982-2003 |
2024 | Miller, E.A., C.A. Baughman, B.M. Jones, and R.R. Jandt. 2024. Biophysical effects of an old tundra fire in the Brooks Range Foothills of Northern Alaska, U.S.A. Polar Science. 39:100984. https://doi.org/10.1016/j.polar.2023.100984 | ABoVE: Gridded 30-m Aboveground Biomass, Shrub Dominance, North Slope, AK, 2007-2016 |
2024 | Montesano, P.M., M. Frost, J. Li, M. Carroll, C.S.R. Neigh, M.J. Macander, J.O. Sexton, and G.V. Frost. 2024. A shift in transitional forests of the North American boreal will persist through 2100. Communications Earth & Environment. 5(1). https://doi.org/10.1038/s43247-024-01454-z | ABoVE: Tree Canopy Cover and Stand Age from Landsat, Boreal Forest Biome, 1984-2020 |
2024 | Pontone, N., K. Millard, D.K. Thompson, L. Guindon, and A. Beaudoin. 2024. A hierarchical, multi?sensor framework for peatland sub?class and vegetation mapping throughout the Canadian boreal forest. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.384 | ABoVE: Post-Fire and Unburned Vegetation Community and Field Data, NWT, Canada, 2018 |
2024 | Poquérusse, J., C.L. Brown, C. Gaillard, C. Doughty, L. Dalén, A.J. Gallagher, M. Wooller, N. Zimov, G.M. Church, B. Lamm, and E. Hysolli. 2024. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-60442-7 | Land Cover and Ecosystem Map Collection for Northern Alaska |
2024 | Poquérusse, J., C.L. Brown, C. Gaillard, C. Doughty, L. Dalén, A.J. Gallagher, M. Wooller, N. Zimov, G.M. Church, B. Lamm, and E. Hysolli. 2024. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Scientific Reports. 14(1). https://doi.org/10.1038/s41598-024-60442-7 | ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020 |
2024 | Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024 | ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018 |
2024 | Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024 | ABoVE: Active Layer Thickness from Airborne L- and P- band SAR, Alaska, 2017, Ver. 3 |
2024 | Sadeghi Chorsi, T., F.J. Meyer, and T.H. Dixon. 2024. Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar. The Cryosphere. 18(8):3723-3740. https://doi.org/10.5194/tc-18-3723-2024 | Soil Matric Potential, Dielectric, and Physical Properties, Arctic Alaska, 2018 |
2024 | Schiks, T.J., B.M. Wotton, and D.L. Martell. 2024. Remote Sensing Active Fire Detection Tools Support Growth Reconstruction for Large Boreal Wildfires. Fire. 7(1):26. https://doi.org/10.3390/fire7010026 | ABoVE: Wildfire Date of Burning within Fire Scars across Alaska and Canada, 2001-2019 |
2024 | Touzi, R., Y. Zhang, P. Wilson, B.H. Choe, M.A. Fobert, G. Hong, and M. Moghaddam. 2024. Investigation of Polarimetric L-band ALOS2 and UAVSAR, and P-band AIRMOSS for Permafrost Characterization along the Inuvik-Tuktoyaktuk Highway. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. 2799-2802. https://doi.org/10.1109/IGARSS53475.2024.10641854 | Summary of the ABoVE L-band and P-band Airborne SAR Surveys, 2012-2022 |
2024 | White, J.C. 2024. Characterizing forest recovery following stand-replacing disturbances in boreal forests: contributions of optical time series and airborne laser scanning data. Silva Fennica. 58(2). https://doi.org/10.14214/sf.23076 | ABoVE: Synthesis of Post-Fire Regeneration Across Boreal North America |
2024 | Xu, Y., Q. Zhuang, B. Zhao, M. Billmire, C. Cook, J. Graham, N.H. French, and R. Prinn. 2024. Impacts of wildfires on boreal forest ecosystem carbon dynamics from 1986 to 2020. Environmental Research Letters. 19(6):064023. https://doi.org/10.1088/1748-9326/ad489a | ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985-2015 |
2024 | Yu, L., L. Fan, P. Ciais, J. Xiao, F. Frappart, S. Sitch, J. Chen, X. Xiao, R. Fensholt, Z. Chang, H. Fang, X. Li, T. Cui, M. Ma, and J. Wigneron. 2024. Forest degradation contributes more to carbon loss than forest cover loss in North American boreal forests. International Journal of Applied Earth Observation and Geoinformation. 128:103729. https://doi.org/10.1016/j.jag.2024.103729 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2024 | Zhao, Y., K. Bakian-Dogaheh, J. Whitcomb, R.H. Chen, Y. Yi, J.S. Kimball, and M. Moghaddam. 2024. Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling. Environmental Research Letters. 19(7):074025. https://doi.org/10.1088/1748-9326/ad560a | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2024 | Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022 | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2024 | Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022 | ABoVE: Characterization of Carbon Dynamics in Burned Forest Plots, NWT, Canada, 2014 |
2024 | Zhu, X., G. Jia, and X. Xu. 2024. Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15):2430-2438. https://doi.org/10.1016/j.scib.2024.05.022 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2023 | Arndt, K.A., J. Hashemi, S.M. Natali, L.D. Schiferl, and A. Virkkala. 2023. Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone. Current Climate Change Reports. 9(2):27-40. https://doi.org/10.1007/s40641-023-00190-4 | Synthesis of Winter In Situ Soil CO2 Flux in pan-Arctic and Boreal Regions, 1989-2017 |
2023 | Arndt, K.A., J. Hashemi, S.M. Natali, L.D. Schiferl, and A. Virkkala. 2023. Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone. Current Climate Change Reports. 9(2):27-40. https://doi.org/10.1007/s40641-023-00190-4 | Gridded CO2 and CH4 Flux Estimates for pan-Arctic and Boreal Regions, 2003-2015 |
2023 | Bill, K.E., C.M. Dieleman, J.L. Baltzer, G.É. Degré-Timmons, M.C. Mack, N.J. Day, S.G. Cumming, X.J. Walker, and M.R. Turetsky. 2023. Post-fire Recovery of Soil Organic Layer Carbon in Canadian Boreal Forests. Ecosystems. https://doi.org/10.1007/s10021-023-00854-0 | Post-fire Recovery of Soil Organic Layer Carbon in Canadian Boreal Forests, 2015-2018 |
2023 | Chen, D., M. Billmire, C.P. Loughner, A. Bredder, N.H. French, H.C. Kim, and T.V. Loboda. 2023. Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires. Science of The Total Environment. 898:165594. https://doi.org/10.1016/j.scitotenv.2023.165594 | ABoVE: Wildfire Date of Burning within Fire Scars across Alaska and Canada, 2001-2019 |
2023 | Chen, D., M. Billmire, C.P. Loughner, A. Bredder, N.H. French, H.C. Kim, and T.V. Loboda. 2023. Simulating spatio-temporal dynamics of surface PM2.5 emitted from Alaskan wildfires. Science of The Total Environment. 898:165594. https://doi.org/10.1016/j.scitotenv.2023.165594 | Simulated Fine Particulate Matter (PM2.5) Estimates over Alaska, 2001-2015 |
2023 | Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2023 | Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453 | ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018 |
2023 | Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453 | ABoVE: Soil Moisture and Active Layer Thickness in Alaska and NWT, Canada, 2008-2020 |
2023 | Chen, R.H., R.J. Michaelides, Y. Zhao, L. Huang, E. Wig, T.D. Sullivan, A.D. Parsekian, H.A. Zebker, M. Moghaddam, and K.M. Schaefer. 2023. Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L?Band InSAR and P?Band PolSAR. Earth and Space Science. 10(1). https://doi.org/10.1029/2022EA002453 | ABoVE: Active Layer Thickness from Airborne L- and P- band SAR, Alaska, 2017, Ver. 3 |
2023 | Clark, J.A., K.D. Tape, L. Baskaran, C. Elder, C. Miller, K. Miner, J.A. O’Donnell, and B.M. Jones. 2023. Do beaver ponds increase methane emissions along Arctic tundra streams? Environmental Research Letters. 18(7):075004. https://doi.org/10.1088/1748-9326/acde8e | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2023 | Frappier, R., D. Lacelle, and R.H. Fraser. 2023. Landscape changes in the Tombstone Territorial Park region (central Yukon, Canada) from multilevel remote sensing analysis. Arctic Science. https://doi.org/10.1139/as-2022-0037 | ABoVE: NDVI Trends across Alaska and Canada from Landsat, 1984-2012 |
2023 | Guddeti, S.S., R.M. Kurakalva, and S. Karuppannan. 2023. Identification of vulnerable areas using geospatial technologies in the lower Manair River basin of Telangana, Southern India. Geomatics, Natural Hazards and Risk. 15(1). https://doi.org/10.1080/19475705.2023.2296379 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2023 | Hansen, W.D., A. Foster, B. Gaglioti, R. Seidl, and W. Rammer. 2023. The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0. Geoscientific Model Development. 16(7):2011-2036. https://doi.org/10.5194/gmd-16-2011-2023 | ABoVE: High Resolution Cloud-Free Snow Cover Extent and Snow Depth, Alaska, 2001-2017 |
2023 | Huemmrich, K.F., J. Gamon, P. Campbell, M. Mora, S. Vargas Z, B. Almanza, and C. Tweedie. 2023. 20 years of change in tundra NDVI from coupled field and satellite observations. Environmental Research Letters. 18(9):094022. https://doi.org/10.1088/1748-9326/acee17 | Spectral Reflectance and Ancillary Data, Tundra Transect, North Slope, AK, 2000-2022 |
2023 | Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288 | ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017 |
2023 | Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288 | ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017 |
2023 | Kyzivat, E.D. and L.C. Smith. 2023. Contemporary and historical detection of small lakes using super resolution Landsat imagery: promise and peril. GIScience & Remote Sensing. 60(1). https://doi.org/10.1080/15481603.2023.2207288 | ABoVE: Historical Lake Shorelines and Areas near Fairbanks, Alaska from 1949-2009 |
2023 | Ludwig, S.M., S.M. Natali, J.D. Schade, M. Powell, G. Fiske, L.D. Schiferl, and R. Commane. 2023. Scaling waterbody carbon dioxide and methane fluxes in the arctic using an integrated terrestrial-aquatic approach. Environmental Research Letters. 18(6):064019. https://doi.org/10.1088/1748-9326/acd467 | ABoVE: Lake and Pond Extents in Alaskan Boreal and Tundra Subregions, 2019-2021 |
2023 | Ludwig, S.M., S.M. Natali, J.D. Schade, M. Powell, G. Fiske, L.D. Schiferl, and R. Commane. 2023. Scaling waterbody carbon dioxide and methane fluxes in the arctic using an integrated terrestrial-aquatic approach. Environmental Research Letters. 18(6):064019. https://doi.org/10.1088/1748-9326/acd467 | CO2 and CH4 Fluxes from Waterbodies, Yukon-Kuskokwim Delta, Alaska, 2016-2019 |
2023 | Massey, R., B.M. Rogers, L.T. Berner, S. Cooperdock, M.C. Mack, X.J. Walker, and S.J. Goetz. 2023. Forest composition change and biophysical climate feedbacks across boreal North America. Nature Climate Change. 13(12):1368-1375. https://doi.org/10.1038/s41558-023-01851-w | Deciduous Fractional Cover and Tree Canopy Cover for Boreal North America, 1992-2015 |
2023 | Miller, E.A., B.M. Jones, C.A. Baughman, R.R. Jandt, J.L. Jenkins, and D.A. Yokel. 2023. Unrecorded Tundra Fires of the Arctic Slope, Alaska USA. Fire. 6(3):101. https://doi.org/10.3390/fire6030101 | ABoVE: Wildfire Date of Burning within Fire Scars across Alaska and Canada, 2001-2019 |
2023 | Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2023 | Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab | ABoVE: LVIS L3 Gridded Vegetation Structure across North America, 2017 and 2019 |
2023 | Montesano, P.M., C.S.R. Neigh, M.J. Macander, W. Wagner, L.I. Duncanson, P. Wang, J.O. Sexton, C.E. Miller, and A.H. Armstrong. 2023. Patterns of regional site index across a North American boreal forest gradient. Environmental Research Letters. 18(7):075006. https://doi.org/10.1088/1748-9326/acdcab | ABoVE: Tree Canopy Cover and Stand Age from Landsat, Boreal Forest Biome, 1984-2020 |
2023 | Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023 | ABoVE: Ignitions, burned area and emissions of fires in AK, YT, and NWT, 2001-2015 |
2023 | Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2023 | Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023 | ABoVE: Ignitions, Burned Area, and Emissions of Fires in AK, YT, and NWT, 2001-2018 |
2023 | Moubarak, M., S. Sistla, S. Potter, S.M. Natali, and B.M. Rogers. 2023. Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska. Biogeosciences. 20(8):1537-1557. https://doi.org/10.5194/bg-20-1537-2023 | ABoVE: Burned Area, Depth, and Combustion for Alaska and Canada, 2001-2019 |
2023 | Ouerfelli, M., M. Tamaazousti, and V. Rivasseau. 2023. Selective multiple power iteration: from tensor PCA to gradient-based exploration of landscapes. The European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-023-00844-2 | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2023 | Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2023 | Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023 | ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985-2015 |
2023 | Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2023 | Potter, S., S. Cooperdock, S. Veraverbeke, X. Walker, M.C. Mack, S.J. Goetz, J. Baltzer, L. Bourgeau-Chavez, A. Burrell, C. Dieleman, N. French, S. Hantson, E.E. Hoy, L. Jenkins, J.F. Johnstone, E.S. Kane, S.M. Natali, J.T. Randerson, M.R. Turetsky, E. Whitman, E. Wiggins, and B.M. Rogers. 2023. Burned area and carbon emissions across northwestern boreal North America from 2001–2019. Biogeosciences. 20(13):2785-2804. https://doi.org/10.5194/bg-20-2785-2023 | ABoVE: Burned Area, Depth, and Combustion for Alaska and Canada, 2001-2019 |
2023 | Smith, L.C., J.V. Fayne, B. Wang, E.D. Kyzivat, C.J. Gleason, M.E. Harlan, T. Langhorst, D. Feng, T.M. Pavelsky, and D.L. Peters. 2023. Peace-Athabasca Delta water surface elevations and slopes mapped from AirSWOT Ka-band InSAR. Remote Sensing Letters. 14(12):1238-1250. https://doi.org/10.1080/2150704X.2023.2280464 | ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017 |
2023 | Smith, L.C., J.V. Fayne, B. Wang, E.D. Kyzivat, C.J. Gleason, M.E. Harlan, T. Langhorst, D. Feng, T.M. Pavelsky, and D.L. Peters. 2023. Peace-Athabasca Delta water surface elevations and slopes mapped from AirSWOT Ka-band InSAR. Remote Sensing Letters. 14(12):1238-1250. https://doi.org/10.1080/2150704X.2023.2280464 | ABoVE: AirSWOT Ka-band Radar over Surface Waters of Alaska and Canada, 2017 |
2023 | Sullender, B.K., C.X. Cunningham, J.D. Lundquist, and L.R. Prugh. 2023. Defining the danger zone: critical snow properties for predator–prey interactions. Oikos. https://doi.org/10.1111/oik.09925 | Snow Properties and Wildlife Tracks in Washington and Alaska |
2023 | Wang, L., V.K. Arora, P. Bartlett, E. Chan, and S.R. Curasi. 2023. Mapping of ESA's Climate Change Initiative land cover data to plant functional types for use in the CLASSIC land model. Biogeosciences. 20(12):2265-2282. https://doi.org/10.5194/bg-20-2265-2023 | ABoVE: Tundra Plant Functional Type Continuous-Cover, North Slope, Alaska, 2010-2015 |
2023 | Watts, J.D., M. Farina, J.S. Kimball, L.D. Schiferl, Z. Liu, K.A. Arndt, D. Zona, A. Ballantyne, E.S. Euskirchen, F.W. Parmentier, M. Helbig, O. Sonnentag, T. Tagesson, J. Rinne, H. Ikawa, M. Ueyama, H. Kobayashi, T. Sachs, D.F. Nadeau, J. Kochendorfer, M. Jackowicz?Korczynski, A. Virkkala, M. Aurela, R. Commane, B. Byrne, L. Birch, M.S. Johnson, N. Madani, B. Rogers, J. Du, A. Endsley, K. Savage, B. Poulter, Z. Zhang, L.M. Bruhwiler, C.E. Miller, S. Goetz, and W.C. Oechel. 2023. Carbon uptake in Eurasian boreal forests dominates the high?latitude net ecosystem carbon budget. Global Change Biology. 29(7):1870-1889. https://doi.org/10.1111/gcb.16553 | ABoVE: Study Domain and Standard Reference Grids |
2023 | Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f | Pre-ABoVE: Ground-penetrating Radar Measurements of ALT on the Alaska North Slope |
2023 | Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f | A Concise Experiment Plan for the Arctic-Boreal Vulnerability Experiment |
2023 | Whitcomb, J., R. Chen, D. Clewley, J.S. Kimball, N.J. Pastick, Y. Yi, and M. Moghaddam. 2023. Maps of active layer thickness in northern Alaska by upscaling P-band polarimetric synthetic aperture radar retrievals. Environmental Research Letters. 19(1):014046. https://doi.org/10.1088/1748-9326/ad127f | ABoVE: Active Layer and Soil Moisture Properties from AirMOSS P-band SAR in Alaska |
2023 | White, J.C., T. Hermosilla, and M.A. Wulder. 2023. Pre-fire measures of boreal forest structure and composition inform interpretation of post-fire spectral recovery rates. Forest Ecology and Management. 537:120948. https://doi.org/10.1016/j.foreco.2023.120948 | ABoVE: Synthesis of Post-Fire Regeneration Across Boreal North America |
2023 | Yang, D., B.D. Morrison, W. Hanston, A. McMahon, L. Baskaran, D.J. Hayes, C.E. Miller, and S.P. Serbin. 2023. Integrating very-high-resolution UAS data and airborne imaging spectroscopy to map the fractional composition of Arctic plant functional types in Western Alaska. Remote Sensing of Environment. 286:113430. https://doi.org/10.1016/j.rse.2022.113430 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2023 | Yoseph, E., E. Hoy, C.D. Elder, S.M. Ludwig, D.R. Thompson, and C.E. Miller. 2023. Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA. Environmental Research Letters. 18(10):104042. https://doi.org/10.1088/1748-9326/acf50b | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2023 | Yoseph, E., E. Hoy, C.D. Elder, S.M. Ludwig, D.R. Thompson, and C.E. Miller. 2023. Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA. Environmental Research Letters. 18(10):104042. https://doi.org/10.1088/1748-9326/acf50b | CO2 and CH4 Fluxes from Waterbodies, Yukon-Kuskokwim Delta, Alaska, 2016-2019 |
2023 | Zhao, B. and Q. Zhuang. 2023. Peatlands and their carbon dynamics in northern high latitudes from 1990 to 2300: a process-based biogeochemistry model analysis. Biogeosciences. 20(1):251-270. https://doi.org/10.5194/bg-20-251-2023 | ABoVE: Active Layer Thickness from Remote Sensing Permafrost Model, Alaska, 2001-2015 |
2023 | Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205 | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2023 | Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205 | ABoVE: Characterization of Carbon Dynamics in Burned Forest Plots, NWT, Canada, 2014 |
2023 | Zhu, X., X. Xu, and G. Jia. 2023. Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18(8):084010. https://doi.org/10.1088/1748-9326/ace205 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2022 | Bakian-Dogaheh, K., Y. Zhao, and M. Moghaddam. 2022. Coupled hydrologic-electromagnetic approach for mapping water and carbon characteristics of permafrost active layer. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS46834.2022.9883115 | ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018 |
2022 | Chandel, A., W. Sarwat, A. Najah, S. Dhanagare, and M. Agarwala. 2022. Evaluating methods to map burned area at 30-meter resolution in forests and agricultural areas of Central India. Frontiers in Forests and Global Change. 5. https://doi.org/10.3389/ffgc.2022.933807 | ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985-2015 |
2022 | Cheng, R., T.S. Magney, E.L. Orcutt, Z. Pierrat, P. Köhler, D.R. Bowling, M.S. Bret-Harte, E.S. Euskirchen, M. Jung, H. Kobayashi, A.V. Rocha, O. Sonnentag, J. Stutz, S. Walther, D. Zona, and C. Frankenberg. 2022. Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence. Environmental Research Letters. 17(11):115009. https://doi.org/10.1088/1748-9326/ac9dae | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2022 | Day, N.J., J.F. Johnstone, K.A. Reid, S.G. Cumming, M.C. Mack, M.R. Turetsky, X.J. Walker, and J.L. Baltzer. 2022. Material Legacies and Environmental Constraints Underlie Fire Resilience of a Dominant Boreal Forest Type. Ecosystems. https://doi.org/10.1007/s10021-022-00772-7 | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2022 | Fuller, A., K. Millard, and J.R. Green. 2022. SatViT: Pretraining Transformers for Earth Observation. IEEE Geoscience and Remote Sensing Letters. 19:01-05. https://doi.org/10.1109/LGRS.2022.3201489 | ABoVE: Post-Fire and Unburned Vegetation Community and Field Data, NWT, Canada, 2018 |
2022 | Fuller, A., K. Millard, and J.R. Green. 2022. SatViT: Pretraining Transformers for Earth Observation. IEEE Geoscience and Remote Sensing Letters. 19:01-05. https://doi.org/10.1109/LGRS.2022.3201489 | ABoVE: Characterization of Burned and Unburned Boreal Forest Stands, SK, Canada, 2016 |
2022 | Hessilt, T.D., J.T. Abatzoglou, Y. Chen, J.T. Randerson, R.C. Scholten, G. van der Werf, and S. Veraverbeke. 2022. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters. 17(5):54008. https://doi.org/10.1088/1748-9326/ac6311 | ABoVE: Ignitions, Burned Area, and Emissions of Fires in AK, YT, and NWT, 2001-2018 |
2022 | Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620 | ABoVE: Ecosystem Map, Great Slave Lake Area, Northwest Territories, Canada, 1997-2011 |
2022 | Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620 | ABoVE: Lake and Wetland Classification from L-band SAR, Alaska and Canada, 2017-2019 |
2022 | Huang, C., L.C. Smith, E.D. Kyzivat, J.V. Fayne, Y. Ming, and C. Spence. 2022. Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience & Remote Sensing. 59(1):1767-1792. https://doi.org/10.1080/15481603.2022.2134620 | ABoVE: Wetland Inundation Coverage at Yukon Flats, AK and PA Delta, Canada, 2017-2019 |
2022 | Khan, S., A. Farooqui, U.K. Shukla, K. Grøsfjeld, J. Knies, and V. Prasad. 2022. Late Pliocene continental climate and vegetation variability in the Arctic-Atlantic gateway region prior to the intensification of Northern Hemisphere glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology. 586:110746. https://doi.org/10.1016/j.palaeo.2021.110746 | Circumpolar Arctic Vegetation, Geobotanical, Physiographic Maps, 1982-2003 |
2022 | Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2022 | Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2022 | Macander, M.J., P.R. Nelson, T.W. Nawrocki, G.V. Frost, K.M. Orndahl, E.C. Palm, A.F. Wells, and S.J. Goetz. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters. 17(5):54042. https://doi.org/10.1088/1748-9326/ac6965 | ABoVE: Modeled Top Cover by Plant Functional Type over Alaska and Yukon, 1985-2020 |
2022 | Millard, K., S. Darling, N. Pelletier, and S. Schultz. 2022. Seasonally-decomposed Sentinel-1 backscatter time-series are useful indicators of peatland wildfire vulnerability. Remote Sensing of Environment. 283:113329. https://doi.org/10.1016/j.rse.2022.113329 | ABoVE: Post-Fire and Unburned Vegetation Community and Field Data, NWT, Canada, 2018 |
2022 | Millard, K., S. Darling, N. Pelletier, and S. Schultz. 2022. Seasonally-decomposed Sentinel-1 backscatter time-series are useful indicators of peatland wildfire vulnerability. Remote Sensing of Environment. 283:113329. https://doi.org/10.1016/j.rse.2022.113329 | ABoVE: Characterization of Burned and Unburned Boreal Forest Stands, SK, Canada, 2016 |
2022 | Phillips, C.A., B.M. Rogers, M. Elder, S. Cooperdock, M. Moubarak, J.T. Randerson, and P.C. Frumhoff. 2022. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances. 8(17). https://doi.org/10.1126/sciadv.abl7161 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2022 | Sweeney, C., A. Chatterjee, S. Wolter, K. McKain, R. Bogue, S. Conley, T. Newberger, L. Hu, L. Ott, B. Poulter, L. Schiferl, B. Weir, Z. Zhang, and C.E. Miller. 2022. Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics. 22(9):6347-6364. https://doi.org/10.5194/acp-22-6347-2022 | ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017 |
2022 | Sweeney, C., A. Chatterjee, S. Wolter, K. McKain, R. Bogue, S. Conley, T. Newberger, L. Hu, L. Ott, B. Poulter, L. Schiferl, B. Weir, Z. Zhang, and C.E. Miller. 2022. Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics. 22(9):6347-6364. https://doi.org/10.5194/acp-22-6347-2022 | ABoVE: Atmospheric Gas Concentrations from Airborne Flasks, Arctic-CAP, 2017 |
2022 | Turner, K.W., B.B. Wolfe, and I. McDonald. 2022. Monitoring 13 years of drastic catchment change and the hydroecological responses of a drained thermokarst lake. Arctic Science. https://doi.org/10.1139/as-2020-0022 | ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017 |
2022 | van Geffen, F., B. Heim, F. Brieger, R. Geng, I.A. Shevtsova, L. Schulte, S.M. Stuenzi, N. Bernhardt, E.I. Troeva, L.A. Pestryakova, E.S. Zakharov, B. Pflug, U. Herzschuh, and S. Kruse. 2022. SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches. Earth System Science Data. 14(11):4967-4994. https://doi.org/10.5194/essd-14-4967-2022 | A Concise Experiment Plan for the Arctic-Boreal Vulnerability Experiment |
2022 | van Geffen, F., B. Heim, F. Brieger, R. Geng, I.A. Shevtsova, L. Schulte, S.M. Stuenzi, N. Bernhardt, E.I. Troeva, L.A. Pestryakova, E.S. Zakharov, B. Pflug, U. Herzschuh, and S. Kruse. 2022. SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches. Earth System Science Data. 14(11):4967-4994. https://doi.org/10.5194/essd-14-4967-2022 | ABoVE: Terrestrial Lidar Scanning Forest-Tundra Ecotone, Brooks Range, Alaska, 2016 |
2022 | Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022 | Gridded Winter Soil CO2 Flux Estimates for pan-Arctic and Boreal Regions, 2003-2100 |
2022 | Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022 | Synthesis of Winter In Situ Soil CO2 Flux in pan-Arctic and Boreal Regions, 1989-2017 |
2022 | Virkkala , A.M., S.M. Natali, B.M. Rogers, J.D. Watts, K. Savage, S.J. Connon, M. Mauritz, E.A.G. Schuur, D. Peter, C. Minions, J. Nojeim, R. Commane, C.A. Emmerton, M. Goeckede, M. Helbig, D. Holl, H. Iwata, H. Kobayashi, P. Kolari, E. Lopez-Blanco, M.E. Marushchak, M. Mastepanov, L. Merbold, F.J.W. Parmentier, M. Peichl, T. Sachs, O. Sonnentag, M. Ueyama, C. Voigt, M. Aurela, J. Boike, G. Celis, N. Chae, T.R. Christensen, M.S. Bret-Harte, S. Dengel, H. Dolman, C.W. Edgar, B. Elberling, E. Euskirchen, A. Grelle, J. Hatakka, E. Humphreys, J. Jarveoja, A. Kotani, L. Kutzbach, T. Laurila, A. Lohila, I. Mammarella, Y. Matsuura, G. Meyer, M.B. Nilsson, S.F. Oberbauer, S.J. Park, R. Petrov, A.S. Prokushkin, C. Schulze, V.L. St. Louis, E.S. Tuittila, J.P. Tuovinen, W. Quinton, A. Varlagin, D. Zona, and V.I. Zyryanov. 2022. The ABCflux database: Arctic-boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. 14(1):179-208. https://doi.org/10.5194/essd-14-179-2022 | The ABCflux Database: Arctic-Boreal CO2 Flux and Site Environmental Data, 1989-2020 |
2022 | Walker, D.A., M.K. Raynolds, M.Z. Kanevskiy, Y.S. Shur, V.E. Romanovsky, B.M. Jones, M. Buchhorn, M.T. Jorgenson, J. Šibík, A.L. Breen, A. Kade, E. Watson-Cook, G. Matyshak, H. Bergstedt, A.K. Liljedahl, R.P. Daanen, B. Connor, D. Nicolsky, and J.L. Peirce. 2022. Cumulative impacts of a gravel road and climate change in an ice-wedge-polygon landscape, Prudhoe Bay, Alaska. Arctic Science. https://doi.org/10.1139/as-2021-0014 | Arctic Vegetation Plots at Prudhoe Bay, Alaska, 1973-1980 |
2022 | Whitman, E., S.A. Parks, L.M. Holsinger, and M. Parisien. 2022. Climate-induced fire regime amplification in Alberta, Canada. Environmental Research Letters. 17(5):055003. https://doi.org/10.1088/1748-9326/ac60d6 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2022 | Yang, D., B.D. Morrison, K.J. Davidson, J. Lamour, Q. Li, P.R. Nelson, W. Hantson, D.J. Hayes, T.L. Swetnam, A. McMahon, J. Anderson, K.S. Ely, A. Rogers, and S.P. Serbin. 2022. Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate. Journal of Ecology. https://doi.org/10.1111/1365-2745.13976 | ABoVE: UAV and Ground-based VNIR/SWIR Spectroscopy Data of Plant Functional Types |
2021 | Baltzer, J.L., N.J. Day, X.J. Walker, D. Greene, M.C. Mack, H.D. Alexander, D. Arseneault, J. Barnes, Y. Bergeron, Y. Boucher, L. Bourgeau-Chavez, C.D. Brown, S. Carriere, B.K. Howard, S. Gauthier, M.A. Parisien, K.A. Reid, B.M. Rogers, C. Roland, L. Sirois, S. Stehn, D.K. Thompson, M.R. Turetsky, S. Veraverbeke, E. Whitman, J. Yang, and J.F. Johnstone. 2021. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences. 118(45):. https://doi.org/10.1073/pnas.2024872118 | ABoVE: Synthesis of Post-Fire Regeneration Across Boreal North America |
2021 | Clayton, L.K., K. Schaefer, M.J. Battaglia, L. Bourgeau-Chavez, J. Chen, R.H. Chen, A. Chen, K. Bakian-Dogaheh, S. Grelik, E. Jafarov, L. Liu, R.J. Michaelides, M. Moghaddam, A.D. Parsekian, A.V. Rocha, S.R. Schaefer, T. Sullivan, A. Tabatabaeenejad, K. Wang, C.J. Wilson, H.A. Zebker, T. Zhang, and Y. Zhao. 2021. Active layer thickness as a function of soil water content. Environmental Research Letters. 16(5):055028. https://doi.org/10.1088/1748-9326/abfa4c | ABoVE: Soil Moisture and Active Layer Thickness in Alaska and NWT, Canada, 2008-2020 |
2021 | Douglas, T.A. and C. Zhang. 2021. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environmental Research Letters. 16(6):065014. https://doi.org/10.1088/1748-9326/ac04d8 | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2021 | Douglas, T.A. and C. Zhang. 2021. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environmental Research Letters. 16(6):065014. https://doi.org/10.1088/1748-9326/ac04d8 | ABoVE: End of Season Snow Depth at CRREL sites near Fairbanks, Alaska, 2014-2019 |
2021 | Frost, G.V., U.S. Bhatt, M.J. Macander, A.S. Hendricks, and M.T. Jorgenson. 2021. Is Alaska's Yukon-Kuskokwim Delta Greening or Browning? Resolving Mixed Signals of Tundra Vegetation Dynamics and Drivers in the Maritime Arctic. Earth Interactions. 25(1):76-93. https://doi.org/10.1175/EI-D-20-0025.1 | Alaska's Changing YK Delta: Knowledge Exchange between Elders and Geoscientists, 2018 |
2021 | Griffin, K.L., S.C. Schmiege, S.G. Bruner, N.T. Boelman, L.A. Vierling, and J.U.H. Eitel. 2021. High Leaf Respiration Rates May Limit the Success of White Spruce Saplings Growing in the Kampfzone at the Arctic Treeline. Frontiers in Plant Science. 12. https://doi.org/10.3389/fpls.2021.746464 | Spruce Leaf, Tree Traits, and Respiration at Range Extremes, AK and NY, USA, 2018 |
2021 | Kim, J., Y. Kim, D. Zona, W. Oechel, S.J. Park, B.Y. Lee, Y. Yi, A. Erb, and C.L. Schaaf. 2021. Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska. Nature Communications. 12(1):. https://doi.org/10.1038/s41467-021-26876-7 | ABoVE: CO2 and CH4 Fluxes and Meteorology at Flux Tower Sites, Alaska, 2015-2017 |
2021 | McCarty, J.L., J. Aalto, V.V. Paunu, S.R. Arnold, S. Eckhardt, Z. Klimont, J.J. Fain, N. Evangeliou, A. Venalainen, N.M. Tchebakova, E.I. Parfenova, K. Kupiainen, A.J. Soja, L. Huang, and S. Wilson. 2021. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences. 18(18):5053-5083. https://doi.org/10.5194/bg-18-5053-2021 | ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001-2015 |
2021 | Ruan, Y., X. Zhang, Q. Xin, Y. Sun, Z. Ao, and X. Jiang. 2021. A method for quality management of vegetation phenophases derived from satellite remote sensing data. International Journal of Remote Sensing. 42(15):5811-5830. https://doi.org/10.1080/01431161.2021.1931534 | ABoVE: Monthly Hydrological Fluxes for Canada and Alaska, 1979-2018 |
2021 | Scholten, R.C., R. Jandt, E.A. Miller, B.M. Rogers, and S. Veraverbeke. 2021. Overwintering fires in boreal forests. Nature. 593(7859):399-404. https://doi.org/10.1038/s41586-021-03437-y | ABoVE: Ignitions, Burned Area, and Emissions of Fires in AK, YT, and NWT, 2001-2018 |
2021 | Severson, J.P., H.E. Johnson, S.M. Arthur, W.B. Leacock, and M.J. Suitor. 2021. Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future. Global Change Biology. 27(19):4546-4563. https://doi.org/10.1111/gcb.15682 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2021 | Shevtsova, I., U. Herzschuh, B. Heim, L. Schulte, S. Stunzi, L.A. Pestryakova, E.S. Zakharov, and S. Kruse. 2021. Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data. Biogeosciences. 18(11):3343-3366. https://doi.org/10.5194/bg-18-3343-2021 | Circumpolar Arctic Vegetation, Geobotanical, Physiographic Maps, 1982-2003 |
2021 | Wang, J.A., A. Baccini, M. Farina, J.T. Randerson, and M.A. Friedl. 2021. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change. 11(5):435-441. https://doi.org/10.1038/s41558-021-01027-4 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2021 | Wang, J.A., A. Baccini, M. Farina, J.T. Randerson, and M.A. Friedl. 2021. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change. 11(5):435-441. https://doi.org/10.1038/s41558-021-01027-4 | ABoVE: Annual Aboveground Biomass for Boreal Forests of ABoVE Core Domain, 1984-2014 |
2021 | Watts, J.D., S.M. Natali, C. Minions, D. Risk, K. Arndt, D. Zona, E.S. Euskirchen, A.V. Rocha, O. Sonnentag, M. Helbig, A. Kalhori, W. Oechel, H. Ikawa, M. Ueyama, R. Suzuki, H. Kobayashi, G. Celis, E.A.G. Schuur, E. Humphreys, Y. Kim, B.Y. Lee, S. Goetz, N. Madani, L.D. Schiferl, R. Commane, J.S. Kimball, Z. Liu, M.S. Torn, S. Potter, J.A. Wang, M.T. Jorgenson, J. Xiao, X. Li, and C. Edgar. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters. 16(8):084051. https://doi.org/10.1088/1748-9326/ac1222 | Soil Respiration Maps for the ABoVE Domain, 2016-2017 |
2020 | Beamish, A., M.K. Raynolds, H. Epstein, G.V. Frost, M.J. Macander, H. Bergstedt, A. Bartsch, S. Kruse, V. Miles, C.M. Tanis, B. Heim, M. Fuchs, S. Chabrillat, I. Shevtsova, M. Verdonen, and J. Wagner. 2020. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment. 246:111872. https://doi.org/10.1016/j.rse.2020.111872 | ABoVE: Distribution Maps of Wildland Fire Fuel Components across Alaskan Tundra, 2015 |
2020 | Brown, D.R.N., Brinkman, T.J., Bolton, W.R. et al.Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Climate Change. https://doi.org/10.1007/s10584-020-02748-9 | ABoVE: Riverbank Erosion and Vegetation Changes, Yukon River Basin, Alaska, 1984-2017 |
2020 | Chen, D., T.V. Loboda, and J.V. Hall. 2020. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2020 | Chen, D., T.V. Loboda, and J.V. Hall. 2020. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011 | ABoVE: Landsat-derived Burn Scar dNBR across Alaska and Canada, 1985-2015 |
2020 | Day, N.J., A.L. White, J.F. Johnstone, G.E. Degre-Timmons, S.G. Cumming, M.C. Mack, M.R. Turetsky, X.J. Walker, and J.L. Baltzer. 2020. Fire characteristics and environmental conditions shape plant communities via regeneration strategy. Ecography. https://doi.org/10.1111/ecog.05211 | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2020 | Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158 | ABoVE: Characterization of Burned and Unburned Boreal Forest Stands, SK, Canada, 2016 |
2020 | Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2020 | Dieleman, C.M., B.M. Rogers, S. Potter, S. Veraverbeke, J.F. Johnstone, J. Laflamme, K. Solvik, X.J. Walker, M.C. Mack, and M.R. Turetsky. 2020. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology. https://doi.org/10.1111/gcb.15158 | ABoVE: Spatial Estimates of Carbon Combustion from Wildfires across SK, Canada, 2015 |
2020 | Dong Chen, Tatiana V. Loboda, Joanne V. HallA systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems,. ISPRS Journal of Photogrammetry and Remote Sensing. 159:63-77. https://doi.org/10.1016/j.isprsjprs.2019.11.011 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2020 | Engram, M., K.M. Walter Anthony, T. Sachs, K. Kohnert, A. Serafimovich, G. Grosse, and F.J. Meyer. 2020. Remote sensing northern lake methane ebullition. Nature Climate Change. 10(6):511-517. https://doi.org/10.1038/s41558-020-0762-8 | ABoVE: SAR-based Methane Ebullition Flux from Lakes, Five Regions, Alaska, 2007-2010 |
2020 | French, N.H.F., J. Graham, E. Whitman, and L.L. Bourgeau-Chavez. 2020. Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF20008 | ABoVE: Burn Severity, Fire Progression, and Field Data, NWT, Canada, 2015-2016 |
2020 | French, N.H.F., J. Graham, E. Whitman, and L.L. Bourgeau-Chavez. 2020. Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF20008 | ABoVE: Ecosystem Map, Great Slave Lake Area, Northwest Territories, Canada, 1997-2011 |
2020 | Frost, G.V., R.A. Loehman, L.B. Saperstein, M.J. Macander, P.R. Nelson, D.P. Paradis, and S.M. Natali. 2020. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environmental Research Letters. 15(2):025003. https://doi.org/10.1088/1748-9326/ab5f49 | ABoVE: Vegetation Composition across Fire History Gradients on the Y-K Delta, Alaska |
2020 | Guindon, L., S. Gauthier, F. Manka, M.A. Parisien, E. Whitman, P. Bernier, A. Beaudoin, P. Villemaire, and R. Skakun. 2020. Trends in wildfire burn severity across Canada, 1985 to 2015. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2020-0353 | ABoVE: AVHRR-Derived Forest Fire Burned Area-Hot Spots, Alaska and Canada, 1989-2000 |
2020 | Huntzinger, D.N., K. Schaefer, C. Schwalm, J.B. Fisher, D. Hayes, E. Stofferahn, J. Carey, A.M. Michalak, Y. Wei, A.K. Jain, H. Kolus, J. Mao, B. Poulter, X. Shi, J. Tang, and H. Tian. 2020. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters. 15(2):025005. https://doi.org/10.1088/1748-9326/ab6784 | ABoVE: Study Domain and Standard Reference Grids, Version 2 |
2020 | Lecigne, B., J.U.H. Eitel, and J.L. Rachlow. 2020. viewshed3d : An r package for quantifying 3D visibility using terrestrial lidar data . Methods in Ecology and Evolution. 11(6):733-738. https://doi.org/10.1111/2041-210X.13385 | ABoVE: Needle-Level Chlorophyll Fluorescence, Alaska and Idaho, USA, 2017 and 2019 |
2020 | Maguire, A.J., J.U.H. Eitel, K.L. Griffin, T.S. Magney, R.A. Long, L.A. Vierling, S.C. Schmiege, J.S. Jennewein, W.A. Weygint, N.T. Boelman, and S.G. Bruner. 2020. On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf Canopies. Geophysical Research Letters. 47(9):. https://doi.org/10.1029/2020GL087858 | ABoVE: Needle-Level Chlorophyll Fluorescence, Alaska and Idaho, USA, 2017 and 2019 |
2020 | Mahoney, P.J., K. Joly, B.L. Borg, M.S. Sorum, T.A. Rinaldi, D. Saalfeld, H. Golden, A.D.M. Latham, A.P. Kelly, B. Mangipane, C.L. Koizumi, L. Neufeld, M. Hebblewhite, N.T. Boelman, and L.R. Prugh. 2020. Denning phenology and reproductive success of wolves in response to climate signals. Environmental Research Letters. 15(12):125001. https://doi.org/10.1088/1748-9326/abc0ba | ABoVE: Wolf Denning Phenology and Reproductive Success, Alaska and Canada, 2000-2017 |
2020 | Pan, C.G., P.B. Kirchner, J.S. Kimball, and J. Du. 2020. A Long-Term Passive Microwave Snowoff Record for the Alaska Region 1988-2016. Remote Sensing. 12(1):153. https://doi.org/10.3390/rs12010153 | ABoVE: Passive Microwave-derived Annual Snowoff Date Maps, 1988-2018 |
2020 | Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278 | ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017 |
2020 | Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278 | ABoVE: AirSWOT Ka-band Radar over Surface Waters of Alaska and Canada, 2017 |
2020 | Pitcher, L.H., L.C. Smith, S.W. Cooley, A. Zaino, R. Carlson, J. Pettit, C.J. Gleason, J.T. Minear, J.V. Fayne, M.J. Willis, J.S. Hansen, K.J. Easterday, M.E. Harlan, T. Langhorst, S.N. Topp, W. Dolan, E.D. Kyzivat, A. Pietroniro, P. Marsh, D. Yang, T. Carter, C. Onclin, N. Hosseini, E. Wilcox, D. Moreira, M. Berge-Nguyen, J.F. Cretaux, and T.M. Pavelsky. 2020. Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products. Frontiers in Earth Science. 8:. https://doi.org/10.3389/feart.2020.00278 | ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017 |
2020 | Potter, C. 2020. Snowmelt timing impacts on growing season phenology in the northern range of Yellowstone National Park estimated from MODIS satellite data. Landscape Ecology. 35(2):373-388. https://doi.org/10.1007/s10980-019-00951-3 | ABoVE: Riverbank Erosion and Vegetation Changes, Yukon River Basin, Alaska, 1984-2017 |
2020 | Smith, C.W., S.K. Panda, U.S. Bhatt, F.J. Meyer, and R.W. Haan. 2020. Improved Vegetation and Wildfire Fuel Type Mapping Using NASA AVIRIS-NG Hyperspectral Data, Interior AK. 1307-1310. https://doi.org/10.1109/IGARSS39084.2020.9324136 | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2020 | Walker, X.J., B.M. Rogers, S. Veraverbeke, J.F. Johnstone, J.L. Baltzer, K. Barrett, L. Bourgeau-Chavez, N.J. Day, W.J. de Groot, C.M. Dieleman, S. Goetz, E. Hoy, L.K. Jenkins, E.S. Kane, M.A. Parisien, S. Potter, E.A.G. Schuur, M. Turetsky, E. Whitman, and M.C. Mack. 2020. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nature Climate Change. 10(12):1130-1136. https://doi.org/10.1038/s41558-020-00920-8 | ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016 |
2020 | Wang, J.A., D. Sulla-Menashe, C.E. Woodcock, O. Sonnentag, R.F. Keeling, and M.A. Friedl. 2020. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology. 26(2):807-822. https://doi.org/10.1111/gcb.14804 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2019 | Bevington, A.R., H.E. Gleason, V.N. Foord, W.C. Floyd, and H.P. Griesbauer. 2019. Regional influence of ocean-atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada. The Cryosphere. 13(10):2693-2712. https://doi.org/10.5194/tc-13-2693-2019 | ABoVE: Rain-on-Snow Frequency and Distribution during Cold Seasons, Alaska, 2003-2016 |
2019 | Chen, H., A. Beaudoin, D.A. Hill, S.R. Cloude, R.S. Skakun, and M. Marchand. 2019. Mapping Forest Height from TanDEM-X Interferometric Coherence Data in Northwest Territories, Canada. Canadian Journal of Remote Sensing. 45(3-4):290-307. https://doi.org/10.1080/07038992.2019.1604119 | ABoVE: Directory of Field Sites Associated with 2017 ABoVE Airborne Campaign |
2019 | Chevallier, F., M. Remaud, C.W. O'Dell, D. Baker, P. Peylin, and A. Cozic. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics. 19(22):14233-14251. https://doi.org/10.5194/acp-19-14233-2019 | ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017 |
2019 | Chevallier, F., M. Remaud, C.W. O'Dell, D. Baker, P. Peylin, and A. Cozic. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics. 19(22):14233-14251. https://doi.org/10.5194/acp-19-14233-2019 | ABoVE: Reflectance Spectra of Tundra Plant Communities across Northern Alaska |
2019 | Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584 | ABoVE: Monthly Hydrological Fluxes for Canada and Alaska, 1979-2018 |
2019 | Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584 | Timeseries of Arctic-Boreal Lake Area Derived from CubeSat Imagery, 2017 |
2019 | He, J., T.V. Loboda, L. Jenkins, and D. Chen. 2019. Mapping fractional cover of major fuel type components across Alaskan tundra. Remote Sensing of Environment. 232:111324. https://doi.org/10.1016/j.rse.2019.111324 | ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991-2011 |
2019 | He, J., T.V. Loboda, L. Jenkins, and D. Chen. 2019. Mapping fractional cover of major fuel type components across Alaskan tundra. Remote Sensing of Environment. 232:111324. https://doi.org/10.1016/j.rse.2019.111324 | ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001-2015 |
2019 | Jenkins, L.K., T. Barry, K.R. Bosse, W.S. Currie, T. Christensen, S. Longan, R.A. Shuchman, D. Tanzer, and J.J. Taylor. 2019. Satellite-based decadal change assessments of pan-Arctic environments. Ambio. 49(3):820-832. https://doi.org/10.1007/s13280-019-01249-z | ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001-2015 |
2019 | Klene, A.E. and F.E. Nelson. 2019. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Peninsula, Northern Alaska. Annals of the American Association of Geographers. 109(5):1394-1414. https://doi.org/10.1080/24694452.2018.1549972 | Pre-ABoVE: Remotely Sensed Active Layer Thickness, Barrow, Alaska, 2006-2011 |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | ABoVE: Hyperspectral Imagery from AVIRIS-NG, Alaskan and Canadian Arctic, 2017-2019 |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | ABoVE: Directory of Field Sites Associated with 2017 ABoVE Airborne Campaign |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | A Concise Experiment Plan for the Arctic-Boreal Vulnerability Experiment |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | ABoVE: AirSWOT Color-Infrared Imagery Over Alaska and Canada, 2017 |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | ABoVE: AirSWOT Ka-band Radar over Surface Waters of Alaska and Canada, 2017 |
2019 | Natali, S.M., J.D. Watts, B.M. Rogers, S. Potter, S.M. Ludwig, A.K. Selbmann, P.F. Sullivan, B.W. Abbott, K.A. Arndt, L. Birch, M.P. Bjorkman, A.A. Bloom, G. Celis, T.R. Christensen, C.T. Christiansen, R. Commane, E.J. Cooper, P. Crill, C. Czimczik, S. Davydov, J. Du, J.E. Egan, B. Elberling, E.S. Euskirchen, T. Friborg, H. Genet, M. Gockede, J.P. Goodrich, P. Grogan, M. Helbig, E.E. Jafarov, J.D. Jastrow, A.A.M. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M.J. Lara, K.S. Larsen, B.Y. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A.D. McGuire, A. Michelsen, C. Minions, W.C. Oechel, D. Olefeldt, F.J.W. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N.M. Schmidt, E.A.G. Schuur, P.R. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C.C. Treat, M.P. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. 9(11):852-857. https://doi.org/10.1038/s41558-019-0592-8 | Gridded Winter Soil CO2 Flux Estimates for pan-Arctic and Boreal Regions, 2003-2100 |
2019 | Natali, S.M., J.D. Watts, B.M. Rogers, S. Potter, S.M. Ludwig, A.K. Selbmann, P.F. Sullivan, B.W. Abbott, K.A. Arndt, L. Birch, M.P. Bjorkman, A.A. Bloom, G. Celis, T.R. Christensen, C.T. Christiansen, R. Commane, E.J. Cooper, P. Crill, C. Czimczik, S. Davydov, J. Du, J.E. Egan, B. Elberling, E.S. Euskirchen, T. Friborg, H. Genet, M. Gockede, J.P. Goodrich, P. Grogan, M. Helbig, E.E. Jafarov, J.D. Jastrow, A.A.M. Kalhori, Y. Kim, J.S. Kimball, L. Kutzbach, M.J. Lara, K.S. Larsen, B.Y. Lee, Z. Liu, M.M. Loranty, M. Lund, M. Lupascu, N. Madani, A. Malhotra, R. Matamala, J. McFarland, A.D. McGuire, A. Michelsen, C. Minions, W.C. Oechel, D. Olefeldt, F.J.W. Parmentier, N. Pirk, B. Poulter, W. Quinton, F. Rezanezhad, D. Risk, T. Sachs, K. Schaefer, N.M. Schmidt, E.A.G. Schuur, P.R. Semenchuk, G. Shaver, O. Sonnentag, G. Starr, C.C. Treat, M.P. Waldrop, Y. Wang, J. Welker, C. Wille, X. Xu, Z. Zhang, Q. Zhuang, and D. Zona. 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. 9(11):852-857. https://doi.org/10.1038/s41558-019-0592-8 | Synthesis of Winter In Situ Soil CO2 Flux in pan-Arctic and Boreal Regions, 1989-2017 |
2019 | Pitcher, L.H., T.M. Pavelsky, L.C. Smith, D.K. Moller, E.H. Altenau, G.H. Allen, C. Lion, D. Butman, S.W. Cooley, J.V. Fayne, and M. Bertram. 2019. AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska. Water Resources Research. 55(2):937-953. https://doi.org/10.1029/2018WR023274 | ABoVE: AirSWOT Radar, Orthomosaic, and Water Masks, Yukon Flats Basin, Alaska, 2015 |
2019 | Potter, S., K. Solvik, A. Erb, S.J. Goetz, J.F. Johnstone, M.C. Mack, J.T. Randerson, M.O. Roman, C.L. Schaaf, M.R. Turetsky, S. Veraverbeke, X.J. Walker, Z. Wang, R. Massey, and B.M. Rogers. 2019. Climate change decreases the cooling effect from postfire albedo in boreal North America. Global Change Biology. https://doi.org/10.1111/gcb.14888 | ABoVE: MODIS-Derived Daily Mean Blue Sky Albedo for Northern North America, 2000-2017 |
2019 | Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2019 | Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y | ABoVE: Characterization of Carbon Dynamics in Burned Forest Plots, NWT, Canada, 2014 |
2019 | Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429 | ABoVE: NDVI Trends across Alaska and Canada from Landsat, 1984-2012 |
2019 | Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429 | ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014 |
2019 | Wang, J.A., and M.A. Friedl. 2019. The role of land cover change in Arctic-Boreal greening and browning trends. Environmental Research Letters. 14(12):125007. https://doi.org/10.1088/1748-9326/ab5429 | ABoVE: Annual Phenology Derived from Landsat across the ABoVE Core Domain, 1984-2014 |
2018 | Berner, L.T., P. Jantz, K.D. Tape, and S.J. Goetz. 2018. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters. 13(3):035002. https://doi.org/10.1088/1748-9326/aaaa9a | ABoVE: Gridded 30-m Aboveground Biomass, Shrub Dominance, North Slope, AK, 2007-2016 |
2018 | Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.F. Lamarque. 2018. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques. 11(5):2653-2668. https://doi.org/10.5194/amt-11-2653-2018 | ABoVE: Directory of Field Sites Associated with 2017 ABoVE Airborne Campaign |
2018 | Walker, X.J., B.M. Rogers, J.L. Baltzer, S.G. Cumming, N.J. Day, S.J. Goetz, J.F. Johnstone, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2018. Cross-scale controls on carbon emissions from boreal forest megafires. Global Change Biology. 24(9):4251-4265. https://doi.org/10.1111/gcb.14287 | ABoVE: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016 |
2017 | Carroll, M. and T. Loboda. 2017. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing. 9(5):497. https://doi.org/10.3390/rs9050497 | ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991-2011 |
2017 | Fraser, R., J. van der Sluijs, and R. Hall. 2017. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. Remote Sensing. 9(3):279. https://doi.org/10.3390/rs9030279 | ABoVE: Burn Severity, Fire Progression, Landcover and Field Data, NWT, Canada, 2014 |
2017 | Jafarov, E.E., A.D. Parsekian, K. Schaefer, L. Liu, A.C. Chen, S.K. Panda, and T. Zhang. 2017. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal. 4(2):72-79. https://doi.org/10.1002/gdj3.49 | Pre-ABoVE: Active Layer Thickness and Soil Water Content, Barrow, Alaska, 2013 |
2017 | Veraverbeke, S., B.M. Rogers, M.L. Goulden, R.R. Jandt, C.E. Miller, E.B. Wiggins, and J.T. Randerson. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change. 7(7):529-534. https://doi.org/10.1038/nclimate3329 | ABoVE: Ignitions, burned area and emissions of fires in AK, YT, and NWT, 2001-2015 |
2017 | Wei, Y., Z. Wei, and S. Vannan2017. Facilitate Visualization and Distribution of NASA?s Environmental Science Data through Open Standards and Open Source Software for Geospatial. Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings. 17:. | ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991-2011 |
2016 | Carroll, M., M. Wooten, C. DiMiceli, R. Sohlberg, and M. Kelly. 2016. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011. Remote Sensing. 8(8):622. https://doi.org/10.3390/rs8080622 | ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991-2011 |
2016 | Chen, A., A.D. Parsekian, K. Schaefer, E. Jafarov, S. Panda, L. Liu, T. Zhang, and H. Zebker. 2016. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. GEOPHYSICS. 81(2):H9-H19. https://doi.org/10.1190/geo2015-0124.1 | Pre-ABoVE: Ground-penetrating Radar Measurements of ALT on the Alaska North Slope |
2024 | Feng, T., L. Duncanson, S. Hancock, P. Montesano, S. Skakun, M.A. Wulder, J.C. White, D. Minor, and T. Loboda. 2024. Characterizing Fire-Induced Forest Structure and Aboveground Biomass Changes in Boreal Forests Using Multitemporal Lidar and Landsat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17:10108-10125. https://doi.org/10.1109/JSTARS.2024.3400218 | Arctic-Boreal Vulnerability Experiment |
2021 | Rawlins, M.A. 2021. Increasing freshwater and dissolved organic carbon flows to Northwest Alaska's Elson lagoon. Environmental Research Letters. 16(10):105014. https://doi.org/10.1088/1748-9326/ac2288 | Arctic-Boreal Vulnerability Experiment |
2021 | Tao, J., Q. Zhu, W.J. Riley, and R.B. Neumann. 2021. Warm-season net CO2 uptake outweighs cold-season emissions over Alaskan North Slope tundra under current and RCP8.5 climate. Environmental Research Letters. 16(5):055012. https://doi.org/10.1088/1748-9326/abf6f5 | Arctic-Boreal Vulnerability Experiment |
2020 | Mahoney, P.J., K. Joly, B.L. Borg, M.S. Sorum, T.A. Rinaldi, D. Saalfeld, H. Golden, A.D.M. Latham, A.P. Kelly, B. Mangipane, C.L. Koizumi, L. Neufeld, M. Hebblewhite, N.T. Boelman, and L.R. Prugh. 2020. Denning phenology and reproductive success of wolves in response to climate signals. Environmental Research Letters. 15(12):125001. https://doi.org/10.1088/1748-9326/abc0ba | Arctic-Boreal Vulnerability Experiment |
2019 | Foster, A.C., A.H. Armstrong, J.K. Shuman, H.H. Shugart, B.M. Rogers, M.C. Mack, S.J. Goetz, and K.J. Ranson. 2019. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling. 409:108765. https://doi.org/10.1016/j.ecolmodel.2019.108765 | Arctic-Boreal Vulnerability Experiment |
2019 | Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44 | Arctic-Boreal Vulnerability Experiment |
2019 | Stofferahn, E., J.B. Fisher, D.J. Hayes, C.R. Schwalm, D.N. Huntzinger, W. Hantson, B. Poulter, and Z. Zhang. 2019. The Arctic-Boreal vulnerability experiment model benchmarking system. Environmental Research Letters. 14(5):055002. https://doi.org/10.1088/1748-9326/ab10fa | Arctic-Boreal Vulnerability Experiment |
2018 | Meddens, A.J., L.A. Vierling, J.U. Eitel, J.S. Jennewein, J.C. White, and M.A. Wulder. 2018. Developing 5?m resolution canopy height and digital terrain models from WorldView and ArcticDEM data. Remote Sensing of Environment. 218:174-188. https://doi.org/10.1016/j.rse.2018.09.010 | Arctic-Boreal Vulnerability Experiment |
2018 | Pan, C.G., P.B. Kirchner, J.S. Kimball, Y. Kim, and J. Du. 2018. Rain-on-snow events in Alaska, their frequency and distribution from satellite observations. Environmental Research Letters. 13(7):075004. https://doi.org/10.1088/1748-9326/aac9d3 | Arctic-Boreal Vulnerability Experiment |