Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home

Publications Citing Arctic-Boreal Vulnerability Experiment (ABoVE)

The following 20 publications cited the Arctic-Boreal Vulnerability Experiment (ABoVE) project.

YearCitationDataset or Project
2019Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584
2019Cooley, S.W., L.C. Smith, J.C. Ryan, L.H. Pitcher, and T.M. Pavelsky. 2019. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters. 46(4):2111-2120. https://doi.org/10.1029/2018GL081584
2019Klene, A.E. and F.E. Nelson. 2019. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Peninsula, Northern Alaska. Annals of the American Association of Geographers. 109(5):1394-1414. https://doi.org/10.1080/24694452.2018.1549972
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Miller, C.E., P.C. Griffith, S.J. Goetz, E.E. Hoy, N. Pinto, I.B. McCubbin, A.K. Thorpe, M. Hofton, D. Hodkinson, C. Hansen, J. Woods, E. Larson, E.S. Kasischke, and H.A. Margolis. 2019. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environmental Research Letters. 14(8):080201. https://doi.org/10.1088/1748-9326/ab0d44
2019Pitcher, L.H., T.M. Pavelsky, L.C. Smith, D.K. Moller, E.H. Altenau, G.H. Allen, C. Lion, D. Butman, S.W. Cooley, J.V. Fayne, and M. Bertram. 2019. AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska. Water Resources Research. 55(2):937-953. https://doi.org/10.1029/2018WR023274
2019Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y
2019Walker, X.J., J.L. Baltzer, S.G. Cumming, N.J. Day, C. Ebert, S. Goetz, J.F. Johnstone, S. Potter, B.M. Rogers, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 572(7770):520-523. https://doi.org/10.1038/s41586-019-1474-y
2018Berner, L.T., P. Jantz, K.D. Tape, and S.J. Goetz. 2018. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters. 13(3):035002. https://doi.org/10.1088/1748-9326/aaaa9a
2018Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.F. Lamarque. 2018. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques. 11(5):2653-2668. https://doi.org/10.5194/amt-11-2653-2018
2018Walker, X.J., B.M. Rogers, J.L. Baltzer, S.G. Cumming, N.J. Day, S.J. Goetz, J.F. Johnstone, E.A.G. Schuur, M.R. Turetsky, and M.C. Mack. 2018. Cross-scale controls on carbon emissions from boreal forest megafires. Global Change Biology. 24(9):4251-4265. https://doi.org/10.1111/gcb.14287
2017Carroll, M. and T. Loboda. 2017. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing. 9(5):497. https://doi.org/10.3390/rs9050497
2017Fraser, R., J. van der Sluijs, and R. Hall. 2017. Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada. Remote Sensing. 9(3):279. https://doi.org/10.3390/rs9030279
2017Jafarov, E.E., A.D. Parsekian, K. Schaefer, L. Liu, A.C. Chen, S.K. Panda, and T. Zhang. 2017. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal. 4(2):72-79. https://doi.org/10.1002/gdj3.49
2017Veraverbeke, S., B.M. Rogers, M.L. Goulden, R.R. Jandt, C.E. Miller, E.B. Wiggins, and J.T. Randerson. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change. 7(7):529-534. https://doi.org/10.1038/nclimate3329
2017Wei, Y., Z. Wei, and S. Vannan2017. Facilitate Visualization and Distribution of NASA?s Environmental Science Data through Open Standards and Open Source Software for Geospatial. Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings. 17:.
2016Carroll, M., M. Wooten, C. DiMiceli, R. Sohlberg, and M. Kelly. 2016. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011. Remote Sensing. 8(8):622. https://doi.org/10.3390/rs8080622
2016Chen, A., A.D. Parsekian, K. Schaefer, E. Jafarov, S. Panda, L. Liu, T. Zhang, and H. Zebker. 2016. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. GEOPHYSICS. 81(2):H9-H19. https://doi.org/10.1190/geo2015-0124.1