Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home

Publications Citing First ISLSCP Field Experiment (FIFE)

The following 47 publications cited the First ISLSCP Field Experiment (FIFE) project.

YearCitationDataset or Project
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2019Williams, K.E., A.B. Harper, C. Huntingford, L.M. Mercado, C.T. Mathison, P.D. Falloon, P.M. Cox, and J. Kim. 2019. How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development. 12(7):3207-3240. https://doi.org/10.5194/gmd-12-3207-2019
2018Huemmrich, K.F., P.E. Campbell, S.K. Voorhies, D.R. Landis, and E.M. Middleton. 2018. Describing prairie C4 plant species area coverage using hyperspectral reflectance. International Journal of Remote Sensing. 1-12. https://doi.org/10.1080/01431161.2018.1488294
2018Huemmrich, K.F., P.E. Campbell, S.K. Voorhies, D.R. Landis, and E.M. Middleton. 2018. Describing prairie C4 plant species area coverage using hyperspectral reflectance. International Journal of Remote Sensing. 1-12. https://doi.org/10.1080/01431161.2018.1488294
2018Huemmrich, K.F., P.E. Campbell, S.K. Voorhies, D.R. Landis, and E.M. Middleton. 2018. Describing prairie C4 plant species area coverage using hyperspectral reflectance. International Journal of Remote Sensing. 1-12. https://doi.org/10.1080/01431161.2018.1488294
2018Huemmrich, K.F., P.E. Campbell, S.K. Voorhies, D.R. Landis, and E.M. Middleton. 2018. Describing prairie C4 plant species area coverage using hyperspectral reflectance. International Journal of Remote Sensing. 1-12. https://doi.org/10.1080/01431161.2018.1488294
2017Aminzadeh, M. and D. Or. 2017. The complementary relationship between actual and potential evaporation for spatially heterogeneous surfaces. Water Resources Research. 53(1):580-601. https://doi.org/10.1002/2016WR019759
2017Jin, H., A.M. Jonsson, K. Bolmgren, O. Langvall, and L. Eklundh. 2017. Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sensing of Environment. 198:203-212. https://doi.org/10.1016/j.rse.2017.06.015
2017Mu, X., R. Hu, Y. Zeng, T.R. McVicar, H. Ren, W. Song, Y. Wang, R. Casa, J. Qi, D. Xie, and G. Yan. 2017. Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components. Agricultural and Forest Meteorology. 246:162-177. https://doi.org/10.1016/j.agrformet.2017.06.009
2017Rawlings, T.2017. Wildfire Mitigation Compliance Through Senate Bill 360 : A Content Analysis of Oregon County Documents. University of Oregon, Community and Regional Planning.
2016Aminzadeh, M., M.L. Roderick, and D. Or. 2016. A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature. Water Resources Research. 52(1):385-406. https://doi.org/10.1002/2015WR017969
2016Aminzadeh, M., M.L. Roderick, and D. Or. 2016. A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature. Water Resources Research. 52(1):385-406. https://doi.org/10.1002/2015WR017969
2016Crago, R., J. Szilagyi, R. Qualls, and J. Huntington. 2016. Rescaling the complementary relationship for land surface evaporation. Water Resources Research. 52(11):8461-8471. https://doi.org/10.1002/2016WR019753
2016Larsen, M.A.D., S.H. Rasmussen, M. Drews, M.B. Butts, J.H. Christensen, and J.C. Refsgaard. 2016. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA. Environmental Earth Sciences. 75(2):. https://doi.org/10.1007/s12665-015-4919-0
2016Larsen, M.A.D., S.H. Rasmussen, M. Drews, M.B. Butts, J.H. Christensen, and J.C. Refsgaard. 2016. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA. Environmental Earth Sciences. 75(2):. https://doi.org/10.1007/s12665-015-4919-0
2016Larsen, M.A.D., S.H. Rasmussen, M. Drews, M.B. Butts, J.H. Christensen, and J.C. Refsgaard. 2016. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA. Environmental Earth Sciences. 75(2):. https://doi.org/10.1007/s12665-015-4919-0
2016Larsen, M.A.D., S.H. Rasmussen, M. Drews, M.B. Butts, J.H. Christensen, and J.C. Refsgaard. 2016. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA. Environmental Earth Sciences. 75(2):. https://doi.org/10.1007/s12665-015-4919-0
2016Larsen, M.A.D., S.H. Rasmussen, M. Drews, M.B. Butts, J.H. Christensen, and J.C. Refsgaard. 2016. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA. Environmental Earth Sciences. 75(2):. https://doi.org/10.1007/s12665-015-4919-0
2012Parrella, J.P., K. Chance, R.J. Salawitch, T. Canty, M. Dorf, and K. Pfeilsticker. 2012. New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008. Atmospheric Measurement Techniques Discussions. 5(5):8017-8050. https://doi.org/10.5194/amtd-5-8017-2012
2012Rasmussen, S.H., J.H. Christensen, M. Drews, D.J. Gochis, and J.C. Refsgaard. 2012. Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling. Journal of Hydrometeorology. 13(6):1817-1835. https://doi.org/10.1175/JHM-D-12-07.1
2008Zhou, T. and Y. Luo. 2008. Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Global Biogeochemical Cycles. 22(3):n/a-n/a. https://doi.org/10.1029/2007GB002939
2007Wang, W.M., Z.L. Li, and H.B. Su. 2007. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology. 143(1-2):106-122. https://doi.org/10.1016/j.agrformet.2006.12.003
2002Buermann, W. 2002. Analysis of a multiyear global vegetation leaf area index data set. Journal of Geophysical Research. 107(D22):. https://doi.org/10.1029/2001JD000975
1999Dai, A., K.E. Trenberth, and T.R. Karl. 1999. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate. 12(8):2451-2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
1999Dai, A., K.E. Trenberth, and T.R. Karl. 1999. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate. 12(8):2451-2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
1999Dai, A., K.E. Trenberth, and T.R. Karl. 1999. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate. 12(8):2451-2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
1999Dai, A., K.E. Trenberth, and T.R. Karl. 1999. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate. 12(8):2451-2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
1999Franks, S.W. and K.J. Beven. 1999. Conditioning a multiple-patch SVAT Model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data. Water Resources Research. 35(9):2751-2761. https://doi.org/10.1029/1999wr900108
1999Ritchie, JT; Gerakis, A.; Suleiman, A.; (1999). Simple model to estimate field-measured soil water limits. Transactions of the ASAE. 42 (6): 1609-1614.
1997Salvucci, G.D. 1997. Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature. Water Resources Research. 33(1):111-122. https://doi.org/10.1029/96wr02858
2007Wang, W.M., Z.L. Li, and H.B. Su. 2007. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology. 143(1-2):106-122. https://doi.org/10.1016/j.agrformet.2006.12.003
1999Groisman, P Y; Genikhovich, Eugene L; Bradley, RS; Bomin, S; (1999). Trends in turbulent heat fluxes over Northern Eurasia, Interactions Between the Cryosphere, Climate and Greenhouse Gases--Proceedings of IUGG 99.