The following 32 publications cited the product ISLSCP II MODIS (Collection 4) IGBP Land Cover, 2000-2001.
Year | Citation |
---|---|
2024 | Sharples, W., U. Bende-Michl, L. Wilson, A. Shokri, A. Frost, and S. Baron-Hay. 2024. Improving continental hydrological models for future climate conditions via multi-objective optimisation. Environmental Modelling & Software. 176:106018. https://doi.org/10.1016/j.envsoft.2024.106018 |
2023 | Di, L. and E. Yu. 2023. Examples of Remote Sensing Applications of Big Data Analytics—Land Cover Time Series Creation. Springer Remote Sensing/Photogrammetry, Remote Sensing Big Data. 261-270. https://doi.org/10.1007/978-3-031-33932-5_16 |
2023 | Li, S., G. Wang, C. Zhu, M. Hannemann, R. Poyatos, J. Lu, J. Li, W. Ullah, D.F.T. Hagan, A. García-García, Y. Liu, Q. Liu, S. Ma, Q. Liu, S. Sun, F. Zhao, and J. Peng. 2023. Spatial patterns and recent temporal trends in global transpiration modelled using eco-evolutionary optimality. Agricultural and Forest Meteorology. 342:109702. https://doi.org/10.1016/j.agrformet.2023.109702 |
2023 | Mazzariello, A., R. Albano, T. Lacava, S. Manfreda, and A. Sole. 2023. Intercomparison of recent microwave satellite soil moisture products on European ecoregions. Journal of Hydrology. 626:130311. https://doi.org/10.1016/j.jhydrol.2023.130311 |
2023 | Wang, Y., Y. Ma, D. Muñoz-Esparza, J. Dai, C.W.Y. Li, P. Lichtig, R.C. Tsang, C. Liu, T. Wang, and G.P. Brasseur. 2023. Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem. Atmospheric Chemistry and Physics. 23(10):5905-5927. https://doi.org/10.5194/acp-23-5905-2023 |
2023 | Yuan, S., W. Lei, Q. Liu, R. Liu, J. Liu, J. Fu, and Y. Han. 2023. Distribution and environmental impact of microalgae production potential under the carbon-neutral target. Energy. 263:125584. https://doi.org/10.1016/j.energy.2022.125584 |
2023 | Yuan, S., W. Lei, Y. Cen, Q. Liu, J. Liu, J. Fu, and Y. Han. 2023. Economic analysis of global microalgae biomass energy potential. Science of The Total Environment. 899:165596. https://doi.org/10.1016/j.scitotenv.2023.165596 |
2022 | Fang, J., H.H. Shugart, F. Liu, X. Yan, Y. Song, and F. Lv. 2022. FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics. Geoscientific Model Development. 15(17):6863-6872. https://doi.org/10.5194/gmd-15-6863-2022 |
2022 | Guirado, E., M. Delgado-Baquerizo, J. Martínez-Valderrama, S. Tabik, D. Alcaraz-Segura, and F.T. Maestre. 2022. Climate legacies drive the distribution and future restoration potential of dryland forests. Nature Plants. 8(8):879-886. https://doi.org/10.1038/s41477-022-01198-8 |
2022 | Makarieva, A.M., A.V. Nefiodov, A.D. Nobre, D. Sheil, P. Nobre, J. Pokorný, P. Hesslerová, and B. Li. 2022. Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts. Heliyon. 8(10):e11173. https://doi.org/10.1016/j.heliyon.2022.e11173 |
2022 | Shu, Mi, and Du, Shihong. 2022. Forty Years' Progress and Challenges of Remote Sensing in National Land Survey. Journal of Geo-Information Science. 24(4):597-616. https://doi.org/10.12082/dqxxkx.2022.210512 |
2021 | Anande, D.M. and M.S. Park. 2021. Impacts of Projected Urban Expansion on Rainfall and Temperature during Rainy Season in the Middle-Eastern Region in Tanzania. Atmosphere. 12(10):1234. https://doi.org/10.3390/atmos12101234 |
2021 | Randazzo, N.A., A.M. Michalak, C.E. Miller, S.M. Miller, Y.P. Shiga, and Y. Fang. 2021. Higher Autumn Temperatures Lead to Contrasting CO 2 Flux Responses in Boreal Forests Versus Tundra and Shrubland . Geophysical Research Letters. 48(18): https://doi.org/10.1029/2021GL093843 |
2021 | Son, R., H. Kim, S.Y.S. Wang, J.H. Jeong, S.H. Woo, J.Y. Jeong, B.D. Lee, S.H. Kim, M. LaPlante, C.G. Kwon, and J.H. Yoon. 2021. Changes in fire weather climatology under 1.5 degC and 2.0 degC warming. Environmental Research Letters. 16(3):034058. https://doi.org/10.1088/1748-9326/abe675 |
2021 | Yao, P.J., D.Y. Gong, and M. Meng. 2021. Changes in spring vegetation greenness over Siberia associated with weather disturbances during 1982-2015. International Journal of Climatology. https://doi.org/10.1002/joc.7095 |
2020 | Munchak, S.J., S. Ringerud, L. Brucker, Y. You, I. de Gelis, and C. Prigent. 2020. An Active-Passive Microwave Land Surface Database From GPM. IEEE Transactions on Geoscience and Remote Sensing. 58(9):6224-6242. https://doi.org/10.1109/TGRS.2020.2975477 |
2020 | Rinnan, R., L.L. Iversen, J. Tang, I. Vedel-Petersen, M. Schollert, and G. Schurgers. 2020. Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. Proceedings of the National Academy of Sciences. 117(51):32476-32483. https://doi.org/10.1073/pnas.2008901117 |
2019 | Norton, A.J., P.J. Rayner, E.N. Koffi, M. Scholze, J.D. Silver, and Y.P. Wang. 2019. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences. 16(15):3069-3093. https://doi.org/10.5194/bg-16-3069-2019 |
2018 | Snell, K.R.S., B.G. Stokke, A. Moksnes, K. Thorup, and F. Fossoy. 2018. From Svalbard to Siberia: Passerines breeding in the High Arctic also endure the extreme cold of the Western Steppe. PLOS ONE. 13(9):e0202114. https://doi.org/10.1371/journal.pone.0202114 |
2018 | Sun, Y., C. Frankenberg, M. Jung, J. Joiner, L. Guanter, P. Kohler, and T. Magney. 2018. Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment. 209:808-823. https://doi.org/10.1016/j.rse.2018.02.016 |
2017 | Hashimoto, S., K. Nanko, B. Tupek, and A. Lehtonen. 2017. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models. Geoscientific Model Development. 10(3):1321-1337. https://doi.org/10.5194/gmd-10-1321-2017 |
2017 | Kaminski, T., M. Scholze, M. Vossbeck, W. Knorr, M. Buchwitz, and M. Reuter. 2017. Constraining a terrestrial biosphere model with remotely sensed atmospheric carbon dioxide. Remote Sensing of Environment. 203:109-124. https://doi.org/10.1016/j.rse.2017.08.017 |
2017 | Li, H. and Y. Zhang. 2017. Regionalising rainfall-runoff modelling for predicting daily runoff: Comparing gridded spatial proximity and gridded integrated similarity approaches against their lumped counterparts. Journal of Hydrology. 550:279-293. https://doi.org/10.1016/j.jhydrol.2017.05.015 |
2016 | Zhang, Y., J.L. Pena-Arancibia, T.R. McVicar, F.H.S. Chiew, J. Vaze, C. Liu, X. Lu, H. Zheng, Y. Wang, Y.Y. Liu, D.G. Miralles, and M. Pan. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports. 6(1): https://doi.org/10.1038/srep19124 |
2015 | Naipal, V., C. Reick, J. Pongratz, and K. Van Oost. 2015. Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors. Geoscientific Model Development. 8(9):2893-2913. https://doi.org/10.5194/gmd-8-2893-2015 |
2015 | Seck, A., C. Welty, and R.M. Maxwell. 2015. Spin-up behavior and effects of initial conditions for an integrated hydrologic model. Water Resources Research. 51(4):2188-2210. https://doi.org/10.1002/2014WR016371 |
2014 | Knorr, W., T. Kaminski, A. Arneth, and U. Weber. 2014. Impact of human population density on fire frequency at the global scale. Biogeosciences. 11(4):1085-1102. https://doi.org/10.5194/bg-11-1085-2014 |
2014 | Schneising, O., M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J.P. Burrows. 2014. Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmospheric Chemistry and Physics. 14(1):133-141. https://doi.org/10.5194/acp-14-133-2014 |
2013 | Feng, S. and Q. Fu. 2013. Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics. 13(19):10081-10094. https://doi.org/10.5194/acp-13-10081-2013 |
2013 | Liu, S., Y. Wei, W.M. Post, R.B. Cook, K. Schaefer, and M.M. Thornton. 2013. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America. Biogeosciences. 10(5):2915-2930. https://doi.org/10.5194/bg-10-2915-2013 |
2013 | Zhang, W., P.A. Miller, B. Smith, R. Wania, T. Koenigk, and R. Doscher. 2013. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model. Environmental Research Letters. 8(3):034023. https://doi.org/10.1088/1748-9326/8/3/034023 |
2012 | Makarieva, A.M., V.G. Gorshkov, and B.L. Li. 2012. Revisiting forest impact on atmospheric water vapor transport and precipitation. Theoretical and Applied Climatology. 111(1-2):79-96. https://doi.org/10.1007/s00704-012-0643-9 |