The following 4 publications cited the product CMS: LiDAR-derived Biomass, Canopy Height and Cover, Sonoma County, California, 2013.
Year | Citation |
---|---|
2022 | Zhang, Y. and J. Liu. 2022. Estimating forest aboveground biomass using temporal features extracted from multiple satellite data products and ensemble machine learning algorithm. Geocarto International. 38(1). https://doi.org/10.1080/10106049.2022.2153930 |
2020 | Girolamo-Neto, C.D., L.Y. Sato, I.D. Sanches, I.C.O. Silva, J.C.S. Rocha, and C.A. Almeida. 2020. OBJECT BASED IMAGE ANALYSIS AND TEXTURE FEATURES FOR PASTURE CLASSIFICATION IN BRAZILIAN SAVANNAH. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. V-3-2020:453-460. https://doi.org/10.5194/isprs-annals-V-3-2020-453-2020 |
2020 | Lowner, M.O., N.C. Bandelow, M. Gerke, F. Hillen, L. Klein, A. Schmidt, and T. Siefer. 2020. TOWARDS INNOVATIVE PARTICIPATION-ORIENTED PLANNING OF INFRASTRUCTURE MEASURES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII-B4-2020:55-61. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-55-2020 |
2018 | Xiao, F., C. Li, Z. Wu, and Y. Wu. 2018. NMSTREAM: A SCALABLE EVENT-DRIVEN ETL FRAMEWORK FOR PROCESSING HETEROGENEOUS STREAMING DATA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. IV-4:243-246. https://doi.org/10.5194/isprs-annals-IV-4-243-2018 |