Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home > Get Data > Science Themes > Soils > Publication List

Publications Citing Global Gridded Soil Phosphorus Distribution Maps at 0.5-degree Resolution

The following 13 publications cited the product Global Gridded Soil Phosphorus Distribution Maps at 0.5-degree Resolution.

Year Citation
2024 Hansen, S.E., M.J. Monfils, R.A. Hackett, R.T. Goebel, and A.K. Monfils. 2024. Data?centric species distribution modeling: Impacts of modeler decisions in a case study of invasive European frog?bit. Applications in Plant Sciences. https://doi.org/10.1002/aps3.11573
2022 Braghiere, R.K., J.B. Fisher, K. Allen, E. Brzostek, M. Shi, X. Yang, D.M. Ricciuto, R.A. Fisher, Q. Zhu, and R.P. Phillips. 2022. Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. Journal of Advances in Modeling Earth Systems. 14(8). https://doi.org/10.1029/2022MS003204
2022 Liu, Y., S. Piao, D. Makowski, P. Ciais, T. Gasser, J. Song, S. Wan, J. Peñuelas, and I.A. Janssens. 2022. Data-driven quantification of nitrogen enrichment impact on Northern Hemisphere plant biomass. Environmental Research Letters. 17(7):74032. https://doi.org/10.1088/1748-9326/ac7b38
2020 de Oliveira Garcia, W., T. Amann, J. Hartmann, K. Karstens, A. Popp, L.R. Boysen, P. Smith, and D. Goll. 2020. Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences. 17(7):2107-2133. https://doi.org/10.5194/bg-17-2107-2020
2020 Seyednasrollah, B. and J.S. Clark. 2020. Where Resource-Acquisitive Species Are Located: The Role of Habitat Heterogeneity. Geophysical Research Letters. 47(8): https://doi.org/10.1029/2020GL087626
2020 Xu, H., M. Detto, S. Fang, R.L. Chazdon, Y. Li, B.C.H. Hau, G.A. Fischer, G.D. Weiblen, J.A. Hogan, J.K. Zimmerman, M. Uriarte, J. Thompson, J. Lian, K. Cao, D. Kenfack, A. Alonso, P. Bissiengou, H.R. Memiaghe, R. Valencia, S.L. Yap, S.J. Davies, X. Mi, and T.L. Yao. 2020. Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications Biology. 3(1): https://doi.org/10.1038/s42003-020-1041-y
2020 Yu, L., B. Ahrens, T. Wutzler, M. Schrumpf, and S. Zaehle. 2020. Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes. Geoscientific Model Development. 13(2):783-803. https://doi.org/10.5194/gmd-13-783-2020
2019 Ratnam, J., C. Sheth, and M. Sankaran. 2019. African and Asian Savannas. 25-49. https://doi.org/10.1002/9781119081111.ch2
2019 Simova, I., B. Sandel, B.J. Enquist, S.T. Michaletz, J. Kattge, C. Violle, B.J. McGill, B. Blonder, K. Engemann, R.K. Peet, S.K. Wiser, N. Morueta-Holme, B. Boyle, N.J.B. Kraft, and J.C. Svenning. 2019. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. Journal of Ecology. https://doi.org/10.1111/1365-2745.13163
2018 Mekonnen, M.M. and A.Y. Hoekstra. 2018. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study. Water Resources Research. 54(1):345-358. https://doi.org/10.1002/2017WR020448
2018 Plaza, C., C. Zaccone, K. Sawicka, A.M. Mendez, A. Tarquis, G. Gasco, G.B.M. Heuvelink, E.A.G. Schuur, and F.T. Maestre. 2018. Soil resources and element stocks in drylands to face global issues. Scientific Reports. 8(1): https://doi.org/10.1038/s41598-018-32229-0
2018 Tian, D., Z. Yan, K.J. Niklas, W. Han, J. Kattge, P.B. Reich, Y. Luo, Y. Chen, Z. Tang, H. Hu, I.J. Wright, B. Schmid, and J. Fang. 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review. 5(5):728-739. https://doi.org/10.1093/nsr/nwx142
2017 Walker, A.P., T. Quaife, P.M. van Bodegom, M.G. De Kauwe, T.F. Keenan, J. Joiner, M.R. Lomas, N. MacBean, C. Xu, X. Yang, and F.I. Woodward. 2017. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V cmax ) on global gross primary production. New Phytologist. 215(4):1370-1386. https://doi.org/10.1111/nph.14623