The following 109 publications cited the Global Ecosystem Dynamics Investigation (GEDI) project.
Year | Citation | Dataset or Project |
---|---|---|
2024 | Bourgoin, C., G. Ceccherini, M. Girardello, C. Vancutsem, V. Avitabile, P.S.A. Beck, R. Beuchle, L. Blanc, G. Duveiller, M. Migliavacca, G. Vieilledent, A. Cescatti, and F. Achard. 2024. Human degradation of tropical moist forests is greater than previously estimated. Nature. 631(8021):570-576. https://doi.org/10.1038/s41586-024-07629-0 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2024 | Bourgoin, C., G. Ceccherini, M. Girardello, C. Vancutsem, V. Avitabile, P.S.A. Beck, R. Beuchle, L. Blanc, G. Duveiller, M. Migliavacca, G. Vieilledent, A. Cescatti, and F. Achard. 2024. Human degradation of tropical moist forests is greater than previously estimated. Nature. 631(8021):570-576. https://doi.org/10.1038/s41586-024-07629-0 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2024 | Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Campos, M.S., L.J. Anjos, E.B.d. Souza, F.G.S. Bezerra, A.M.M.d. Lima, D.R. Galbraith, and M. Adami. 2024. Prioritizing Amazon Forest conservation: Assessing potential biomass under climate change. Global Ecology and Conservation. 54:e03106. https://doi.org/10.1016/j.gecco.2024.e03106 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Demol, M., N. Aguilar-Amuchastegui, G. Bernotaite, M. Disney, L. Duncanson, E. Elmendorp, A. Espejo, A. Furey, S. Hancock, J. Hansen, H. Horsley, S. Langa, M. Liang, A. Locke, V. Manjate, F. Mapanga, H. Omidvar, A. Parsons, E. Peneva-Reed, T. Perry, B.L. Puma Vilca, P. Rodríguez-Veiga, C. Sutcliffe, R. Upham, B. de Walque, and A. Burt. 2024. Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Communications Earth & Environment. 5(1). https://doi.org/10.1038/s43247-024-01448-x | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Fararoda, R., R.S. Reddy, G. Rajashekar, T. Mayamanikandan, P. Mutyala, K. Satish, S.W. Pasha, and C. Jha. 2024. Improving plot-level above ground biomass estimation in tropical Indian forests. Ecological Informatics. 81:102621. https://doi.org/10.1016/j.ecoinf.2024.102621 | GEDI L4B Country-level Summaries of Aboveground Biomass |
2024 | Friedman, N.R. and V. Remeš. 2024. Dorsal and Ventral Plumage Coloration Evolve as Distinct Modules with Different Environmental Correlations. The American Naturalist. 203(4):528-534. https://doi.org/10.1086/728766 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Holcomb, A., P. Burns, S. Keshav, and D.A. Coomes. 2024. Repeat GEDI footprints measure the effects of tropical forest disturbances. Remote Sensing of Environment. 308:114174. https://doi.org/10.1016/j.rse.2024.114174 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Jha, N., S.P. Healey, Z. Yang, G. Ståhl, and M.G. Betts. 2024. Vicarious calibration of GEDI biomass with Landsat age data for understanding secondary forest carbon dynamics. Environmental Research Letters. 19(4):044062. https://doi.org/10.1088/1748-9326/ad3661 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2024 | Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2024 | Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416 | GEDI L4A Footprint Level Aboveground Biomass Density, Golden Weeks, Version 1 |
2024 | Li, H., T. Hiroshima, X. Li, M. Hayashi, and T. Kato. 2024. High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sensing of Environment. 312:114322. https://doi.org/10.1016/j.rse.2024.114322 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Liu, X., C.S. Neigh, M. Pardini, and M. Forkel. 2024. Estimating forest height and above-ground biomass in tropical forests using P-band TomoSAR and GEDI observations. International Journal of Remote Sensing. 45(9):3129-3148. https://doi.org/10.1080/01431161.2024.2343134 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | May, P.B., M. Schlund, J. Armston, M.M. Kotowska, F. Brambach, A. Wenzel, and S. Erasmi. 2024. Mapping aboveground biomass in Indonesian lowland forests using GEDI and hierarchical models. Remote Sensing of Environment. 313:114384. https://doi.org/10.1016/j.rse.2024.114384 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | May, P.B., R.O. Dubayah, J.M. Bruening, and G.C. Gaines. 2024. Connecting spaceborne lidar with NFI networks: A method for improved estimation of forest structure and biomass. International Journal of Applied Earth Observation and Geoinformation. 129:103797. https://doi.org/10.1016/j.jag.2024.103797 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2024 | May, P.B., R.O. Dubayah, J.M. Bruening, and G.C. Gaines. 2024. Connecting spaceborne lidar with NFI networks: A method for improved estimation of forest structure and biomass. International Journal of Applied Earth Observation and Geoinformation. 129:103797. https://doi.org/10.1016/j.jag.2024.103797 | GEDI L4B Gridded Aboveground Biomass Density, Version 2.1 |
2024 | Pascual, A., A. Grau-Neira, E. Morales-Santana, F. Cereceda-Espinoza, J. Pérez-Quezada, A. Cárdenas Martínez, and T. Fuentes-Castillo. 2024. Old-growth mapping in Patagonia’s evergreen forests must integrate GEDI data to overcome NFI data limitations and to effectively support biodiversity conservation. Forest Ecology and Management. 568:122059. https://doi.org/10.1016/j.foreco.2024.122059 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Pascual, A., A. Grau-Neira, E. Morales-Santana, F. Cereceda-Espinoza, J. Pérez-Quezada, A. Cárdenas Martínez, and T. Fuentes-Castillo. 2024. Old-growth mapping in Patagonia’s evergreen forests must integrate GEDI data to overcome NFI data limitations and to effectively support biodiversity conservation. Forest Ecology and Management. 568:122059. https://doi.org/10.1016/j.foreco.2024.122059 | GEDI L4B Country-level Summaries of Aboveground Biomass |
2024 | Pletcher, E., S. Smith-Tripp, D. Evans, and N.B. Schwartz. 2024. Evaluating global vegetation products for application in heterogeneous forest-savanna landscapes. International Journal of Remote Sensing. 45(2):492-507. https://doi.org/10.1080/01431161.2023.2299278 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Pronk, M., A. Hooijer, D. Eilander, A. Haag, T. de Jong, M. Vousdoukas, R. Vernimmen, H. Ledoux, and M. Eleveld. 2024. DeltaDTM: A global coastal digital terrain model. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03091-9 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2024 | Sillett, S.C., M.E. Graham, J.P. Montague, M.E. Antoine, and G.W. Koch. 2024. Ground-based calibration for remote sensing of biomass in the tallest forests. Forest Ecology and Management. 561:121879. https://doi.org/10.1016/j.foreco.2024.121879 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Tolan, J., H. Yang, B. Nosarzewski, G. Couairon, H.V. Vo, J. Brandt, J. Spore, S. Majumdar, D. Haziza, J. Vamaraju, T. Moutakanni, P. Bojanowski, T. Johns, B. White, T. Tiecke, and C. Couprie. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment. 300:113888. https://doi.org/10.1016/j.rse.2023.113888 | GEDI L3 Gridded Land Surface Metrics, Version 1 |
2024 | Tolan, J., H. Yang, B. Nosarzewski, G. Couairon, H.V. Vo, J. Brandt, J. Spore, S. Majumdar, D. Haziza, J. Vamaraju, T. Moutakanni, P. Bojanowski, T. Johns, B. White, T. Tiecke, and C. Couprie. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment. 300:113888. https://doi.org/10.1016/j.rse.2023.113888 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2024 | Trew, B.T., D.P. Edwards, A.C. Lees, D.H. Klinges, R. Early, M. Svátek, R. Plichta, R. Matula, J. Okello, A. Niessner, M. Barthel, J. Six, E.E. Maeda, J. Barlow, R.O. do Nascimento, E. Berenguer, J. Ferreira, J. Sallo-Bravo, and I.M.D. Maclean. 2024. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nature Climate Change. 14(7):753-759. https://doi.org/10.1038/s41558-024-02031-0 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2023 | Bullock, E.L., S.P. Healey, Z. Yang, R. Acosta, H. Villalba, K.P. Insfrán, J.B. Melo, S. Wilson, L. Duncanson, E. Næsset, J. Armston, S. Saarela, G. Ståhl, P.L. Patterson, and R. Dubayah. 2023. Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay’s national forest inventory. Environmental Research Letters. 18(8):085001. https://doi.org/10.1088/1748-9326/acdf03 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2023 | Chen, S., C.E. Woodcock, T. Saphangthong, and P. Olofsson. 2023. Satellite data reveals a recent increase in shifting cultivation and associated carbon emissions in Laos. Environmental Research Letters. 18(11):114012. https://doi.org/10.1088/1748-9326/acffdd | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2023 | Choi, C., M. Pardini, J. Armston, and K.P. Papathanassiou. 2023. Forest Biomass Mapping Using Continuous InSAR and Discrete Waveform Lidar Measurements: A TanDEM-X/GEDI Test Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 16:7675-7689. https://doi.org/10.1109/JSTARS.2023.3302026 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2023 | Farrant, D.N., D.A. Roberts, C.M. D’Antonio, and A.E. Larsen. 2023. What follows fallow? Assessing revegetation patterns on abandoned sugarcane land in Hawai?i. Agriculture, Ecosystems & Environment. 355:108603. https://doi.org/10.1016/j.agee.2023.108603 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Geremew, T., A. Gonsamo, W. Zewdie, and P. Pellikka. 2023. Extrapolation of canopy height and cover metrics of GEDI LiDAR in tropical montane forest ecosystem. African Geographical Review. 1-17. https://doi.org/10.1080/19376812.2023.2164865 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2023 | Hoffrén, R., M.T. Lamelas, J. de la Riva, D. Domingo, A.L. Montealegre, A. García-Martín, and S. Revilla. 2023. Assessing GEDI-NASA system for forest fuels classification using machine learning techniques. International Journal of Applied Earth Observation and Geoinformation. 116:103175. https://doi.org/10.1016/j.jag.2022.103175 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2023 | Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2023 | Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2 |
2023 | Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2023 | Hunka, N., M. Santoro, J. Armston, R. Dubayah, R.E. McRoberts, E. Næsset, S. Quegan, M. Urbazaev, A. Pascual, P.B. May, D. Minor, V. Leitold, P. Basak, M. Liang, J. Melo, M. Herold, N. Málaga, S. Wilson, P. Durán Montesinos, A. Arana, R. Ernesto De La Cruz Paiva, J. Ferrand, S. Keoka, J. Guerra-Hernández, and L. Duncanson. 2023. On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake. Environmental Research Letters. 18(12):124042. https://doi.org/10.1088/1748-9326/ad0b60 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2023 | Hunka, N., M. Santoro, J. Armston, R. Dubayah, R.E. McRoberts, E. Næsset, S. Quegan, M. Urbazaev, A. Pascual, P.B. May, D. Minor, V. Leitold, P. Basak, M. Liang, J. Melo, M. Herold, N. Málaga, S. Wilson, P. Durán Montesinos, A. Arana, R. Ernesto De La Cruz Paiva, J. Ferrand, S. Keoka, J. Guerra-Hernández, and L. Duncanson. 2023. On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake. Environmental Research Letters. 18(12):124042. https://doi.org/10.1088/1748-9326/ad0b60 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Lang, N., W. Jetz, K. Schindler, and J.D. Wegner. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution. 7(11):1778-1789. https://doi.org/10.1038/s41559-023-02206-6 | GEDI L3 Gridded Land Surface Metrics, Version 1 |
2023 | Li, W., W. Guo, M. Pasgaard, Z. Niu, L. Wang, F. Chen, Y. Qin, and J. Svenning. 2023. Human fingerprint on structural density of forests globally. Nature Sustainability. 6(4):368-379. https://doi.org/10.1038/s41893-022-01020-5 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2023 | Liang, M., L. Duncanson, J.A. Silva, and F. Sedano. 2023. Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat. Remote Sensing of Environment. 284:113367. https://doi.org/10.1016/j.rse.2022.113367 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2023 | Lombardo, S., J. Kinney, D. Blake, S. Chase, A. Stovall, A. Siddiqi, K. Arquilla, S. Israel, D. Wood, and O. de Weck. 2023. Accessible satellite data decision support systems for Yurok Tribe forest management. Acta Astronautica. 213:777-791. https://doi.org/10.1016/j.actaastro.2023.09.040 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | May, P., K.S. McConville, G.G. Moisen, J. Bruening, and R. Dubayah. 2023. A spatially varying model for small area estimates of biomass density across the contiguous United States. Remote Sensing of Environment. 286:113420. https://doi.org/10.1016/j.rse.2022.113420 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Nathaniel, J., G. Nyirjesy, C.D. Watson, C.M. Albrecht, and L.J. Klein. 2023. Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS52108.2023.10282838 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2023 | Padalia, H., A. Prakash, and T. Watham. 2023. Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecological Informatics. 77:102234. https://doi.org/10.1016/j.ecoinf.2023.102234 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Pascual, A., J. Guerra-Hernández, J. Armston, D.M. Minor, L.I. Duncanson, P.B. May, J.R. Kellner, and R. Dubayah. 2023. Assessing the performance of NASA’s GEDI L4A footprint aboveground biomass density models using National Forest Inventory and airborne laser scanning data in Mediterranean forest ecosystems. Forest Ecology and Management. 538:120975. https://doi.org/10.1016/j.foreco.2023.120975 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2023 | Retallack, A., G. Finlayson, B. Ostendorf, K. Clarke, and M. Lewis. 2023. Remote sensing for monitoring rangeland condition: Current status and development of methods. Environmental and Sustainability Indicators. 19:100285. https://doi.org/10.1016/j.indic.2023.100285 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Silveira, E.M., V.C. Radeloff, S. Martinuzzi, G.J. Martinez Pastur, J. Bono, N. Politi, L. Lizarraga, L.O. Rivera, L. Ciuffoli, Y.M. Rosas, A.M. Olah, G.I. Gavier-Pizarro, and A.M. Pidgeon. 2023. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment. 285:113391. https://doi.org/10.1016/j.rse.2022.113391 | GEDI L3 Gridded Land Surface Metrics, Version 1 |
2023 | Silveira, E.M., V.C. Radeloff, S. Martinuzzi, G.J. Martinez Pastur, J. Bono, N. Politi, L. Lizarraga, L.O. Rivera, L. Ciuffoli, Y.M. Rosas, A.M. Olah, G.I. Gavier-Pizarro, and A.M. Pidgeon. 2023. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment. 285:113391. https://doi.org/10.1016/j.rse.2022.113391 | GEDI L4A Footprint Level Aboveground Biomass Density, Golden Weeks, Version 1 |
2023 | V.C. Oliveira, P., X. Zhang, B. Peterson, and J.P. Ometto. 2023. Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest. Science of Remote Sensing. 100083. https://doi.org/10.1016/j.srs.2023.100083 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2023 | Wang, X., X. Liu, Y. Wu, R. Chen, and S. Wang. 2023. Dynamic Assessment and Change Analysis of Ecosystem Service Value Based on Physical Assessment Method in Cili County, China. Forests. 14(5):869. https://doi.org/10.3390/f14050869 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2 |
2022 | Chopping, M., Z. Wang, C. Schaaf, M.A. Bull, and R.R. Duchesne. 2022. Forest aboveground biomass in the southwestern United States from a MISR multi-angle index, 2000–2015. Remote Sensing of Environment. 275:112964. https://doi.org/10.1016/j.rse.2022.112964 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2 |
2022 | Guo, Y., Y. Lin, W.Y. Chen, J. Ling, Q. Li, J. Michalski, and H. Zhang. 2022. New two-step species-level AGB estimation model applied to urban parks. Ecological Indicators. 145:109694. https://doi.org/10.1016/j.ecolind.2022.109694 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2022 | Labrière, N., S.J. Davies, M.I. Disney, L.I. Duncanson, M. Herold, S.L. Lewis, O.L. Phillips, S. Quegan, S.S. Saatchi, D.G. Schepaschenko, K. Scipal, P. Sist, and J. Chave. 2022. Toward a forest biomass reference measurement system for remote sensing applications. Global Change Biology. 29(3):827-840. https://doi.org/10.1111/gcb.16497 | GEDI L3 Gridded Land Surface Metrics, Version 2 |
2022 | Vangi, E., G. D’Amico, S. Francini, and G. Chirici. 2022. GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualization. Earth Science Informatics. 16(1):1109-1117. https://doi.org/10.1007/s12145-022-00915-3 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 1 |
2022 | Vangi, E., G. D’Amico, S. Francini, and G. Chirici. 2022. GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualization. Earth Science Informatics. 16(1):1109-1117. https://doi.org/10.1007/s12145-022-00915-3 | GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1 |
2022 | Zhang, S., Y. Chen, Y. Lu, H. Guo, X. Guo, C. Liu, X. Zhou, and Y. Zhang. 2022. Spatial variability and driving factors of soil multifunctionality in drylands of China. Regional Sustainability. 3(3):223-232. https://doi.org/10.1016/j.regsus.2022.10.001 | GEDI L4B Gridded Aboveground Biomass Density, Version 2 |
2024 | Elliott, L.H., J.C. Vogeler, J.D. Holbrook, B.R. Barry, and K.T. Vierling. 2024. Assessing GEDI data fusions to map woodpecker distributions and biodiversity hotspots. Environmental Research Letters. 19(9):094027. https://doi.org/10.1088/1748-9326/ad64eb | Global Ecosystem Dynamics Investigation |
2024 | Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416 | Global Ecosystem Dynamics Investigation |
2024 | Mohite, J., S. Sawant, A. Pandit, M. Sakkan, S. Pappula, and A. Parmar. 2024. Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest. International Journal of Remote Sensing. 45(4):1304-1338. https://doi.org/10.1080/01431161.2024.2307944 | Global Ecosystem Dynamics Investigation |
2022 | Atmani, F., B. Bookhagen, and T. Smith. 2022. Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars. Remote Sensing. 14(12):2928. https://doi.org/10.3390/rs14122928 | Global Ecosystem Dynamics Investigation |
2022 | Duncanson, L., J.R. Kellner, J. Armston, R. Dubayah, D.M. Minor, S. Hancock, S.P. Healey, P.L. Patterson, S. Saarela, S. Marselis, C.E. Silva, J. Bruening, S.J. Goetz, H. Tang, M. Hofton, B. Blair, S. Luthcke, L. Fatoyinbo, K. Abernethy, A. Alonso, H.E. Andersen, P. Aplin, T.R. Baker, N. Barbier, J.F. Bastin, P. Biber, P. Boeckx, J. Bogaert, L. Boschetti, P.B. Boucher, D.S. Boyd, D.F.R.P. Burslem, S. Calvo-Rodriguez, J. Chave, R.L. Chazdon, D.B. Clark, D.A. Clark, W.B. Cohen, D.A. Coomes, P. Corona, K.C. Cushman, M.E.J. Cutler, J.W. Dalling, M. Dalponte, J. Dash, S. de-Miguel, S. Deng, P.W. Ellis, B. Erasmus, P.A. Fekety, A. Fernandez-Landa, A. Ferraz, R. Fischer, A.G. Fisher, A. Garcia-Abril, T. Gobakken, J.M. Hacker, M. Heurich, R.A. Hill, C. Hopkinson, H. Huang, S.P. Hubbell, A.T. Hudak, A. Huth, B. Imbach, K.J. Jeffery, M. Katoh, E. Kearsley, D. Kenfack, N. Kljun, N. Knapp, K. Kral, M. Krucek, N. Labriere, S.L. Lewis, M. Longo, R.M. Lucas, R. Main, J.A. Manzanera, R.V. Martinez, R. Mathieu, H. Memiaghe, V. Meyer, A.M. Mendoza, A. Monerris, P. Montesano, F. Morsdorf, E. Naesset, L. Naidoo, R. Nilus, M. O'Brien, D.A. Orwig, K. Papathanassiou, G. Parker, C. Philipson, O.L. Phillips, J. Pisek, J.R. Poulsen, H. Pretzsch, C. Rudiger, S. Saatchi, A. Sanchez-Azofeifa, N. Sanchez-Lopez, R. Scholes, C.A. Silva, M. Simard, A. Skidmore, K. Sterenczak, M. Tanase, C. Torresan, R. Valbuena, H. Verbeeck, T. Vrska, K. Wessels, J.C. White, L.J.T. White, E. Zahabu, and C. Zgraggen. 2022. Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment. 270:112845. https://doi.org/10.1016/j.rse.2021.112845 | Global Ecosystem Dynamics Investigation |
2022 | Fayad, I., N. Baghdadi, and F. Frappart. 2022. Comparative Analysis of GEDI's Elevation Accuracy from the First and Second Data Product Releases over Inland Waterbodies. Remote Sensing. 14(2):340. https://doi.org/10.3390/rs14020340 | Global Ecosystem Dynamics Investigation |
2022 | Lang, N., N. Kalischek, J. Armston, K. Schindler, R. Dubayah, and J.D. Wegner. 2022. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sensing of Environment. 268:112760. https://doi.org/10.1016/j.rse.2021.112760 | Global Ecosystem Dynamics Investigation |
2022 | Leite, R.V., C.A. Silva, E.N. Broadbent, C.H.d. Amaral, V. Liesenberg, D.R.A.d. Almeida, M. Mohan, S. Godinho, A. Cardil, C. Hamamura, B.L.d. Faria, P.H.S. Brancalion, A. Hirsch, G.E. Marcatti, A.P. Dalla Corte, A.M.A. Zambrano, M.B.T.d. Costa, E.A.T. Matricardi, A.L.d. Silva, L.R.R.Y. Goya, R. Valbuena, B.A.F.d. Mendonca, C.H.L. Silva Junior, L.E.O.C. Aragao, M. Garcia, J. Liang, T. Merrick, A.T. Hudak, J. Xiao, S. Hancock, L. Duncason, M.P. Ferreira, D. Valle, S. Saatchi, and C. Klauberg. 2022. Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment. 268:112764. https://doi.org/10.1016/j.rse.2021.112764 | Global Ecosystem Dynamics Investigation |
2022 | Liu, X., Y. Su, T. Hu, Q. Yang, B. Liu, Y. Deng, H. Tang, Z. Tang, J. Fang, and Q. Guo. 2022. Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment. 269:112844. https://doi.org/10.1016/j.rse.2021.112844 | Global Ecosystem Dynamics Investigation |
2021 | Bauer, L., N. Knapp, and R. Fischer. 2021. Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sensing. 13(22):4540. https://doi.org/10.3390/rs13224540 | Global Ecosystem Dynamics Investigation |
2021 | Chen, H., S.R. Cloude, and J.C. White. 2021. Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping: A Combined SINC + Legendre Approach. Remote Sensing. 13(15):2882. https://doi.org/10.3390/rs13152882 | Global Ecosystem Dynamics Investigation |
2021 | Di Tommaso, S., S. Wang, and D.B. Lobell. 2021. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters. 16(12):125002. https://doi.org/10.1088/1748-9326/ac358c | Global Ecosystem Dynamics Investigation |
2021 | DiMiceli, C., J. Townshend, M. Carroll, and R. Sohlberg. 2021. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment. 254:112271. https://doi.org/10.1016/j.rse.2020.112271 | Global Ecosystem Dynamics Investigation |
2021 | Dorado-Roda, I., A. Pascual, S. Godinho, C. Silva, B. Botequim, P. Rodriguez-Gonzalvez, E. Gonzalez-Ferreiro, and J. Guerra-Hernandez. 2021. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing. 13(12):2279. https://doi.org/10.3390/rs13122279 | Global Ecosystem Dynamics Investigation |
2021 | Fayad, I., D. Ienco, N. Baghdadi, R. Gaetano, C.A. Alvares, J.L. Stape, H. Ferraco Scolforo, and G. Le Maire. 2021. A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sensing of Environment. 265:112652. https://doi.org/10.1016/j.rse.2021.112652 | Global Ecosystem Dynamics Investigation |
2021 | Fayad, I., N. Baghdadi, and J. Riedi. 2021. Quality Assessment of Acquired GEDI Waveforms: Case Study over France, Tunisia and French Guiana. Remote Sensing. 13(16):3144. https://doi.org/10.3390/rs13163144 | Global Ecosystem Dynamics Investigation |
2021 | Fayad, I., N. Baghdadi, C. Alcarde Alvares, J.L. Stape, J.S. Bailly, H.F. Scolforo, I.R. Cegatta, M. Zribi, and G. Le Maire. 2021. Terrain Slope Effect on Forest Height and Wood Volume Estimation from GEDI Data. Remote Sensing. 13(11):2136. https://doi.org/10.3390/rs13112136 | Global Ecosystem Dynamics Investigation |
2021 | Kacic, P., A. Hirner, and E. Da Ponte. 2021. Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sensing. 13(24):5105. https://doi.org/10.3390/rs13245105 | Global Ecosystem Dynamics Investigation |
2021 | Kokalj, Ž. and J. Mast. 2021. Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings. Journal of Archaeological Science: Reports. 36:102811. https://doi.org/10.1016/j.jasrep.2021.102811 | Global Ecosystem Dynamics Investigation |
2021 | Potapov, P., X. Li, A. Hernandez-Serna, A. Tyukavina, M.C. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang, C.E. Silva, J. Armston, R. Dubayah, J.B. Blair, and M. Hofton. 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment. 253:112165. https://doi.org/10.1016/j.rse.2020.112165 | Global Ecosystem Dynamics Investigation |
2021 | Rishmawi, K., C. Huang, and X. Zhan. 2021. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sensing. 13(3):442. https://doi.org/10.3390/rs13030442 | Global Ecosystem Dynamics Investigation |
2021 | Silva, C.A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, M. Simard, C.Z. Marshak, J. Armston, S. Lutchke, and R. Dubayah. 2021. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment. 253:112234. https://doi.org/10.1016/j.rse.2020.112234 | Global Ecosystem Dynamics Investigation |
2021 | Spracklen, B. and D.V. Spracklen. 2021. Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sensing. 13(7):1233. https://doi.org/10.3390/rs13071233 | Global Ecosystem Dynamics Investigation |
2021 | Vittucci, C., L. Guerriero, P. Ferrazzoli, P. Richaume, and Y.H. Kerr. 2021. SMOS L-VOD Retrieved by Level 2 Algorithm and its Correlation With GEDI LIDAR Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14:11870-11878. https://doi.org/10.1109/JSTARS.2021.3128022 | Global Ecosystem Dynamics Investigation |
2021 | Xiang, J., H. Li, J. Zhao, X. Cai, and P. Li. 2021. Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. Journal of Hydrology. 597:126312. https://doi.org/10.1016/j.jhydrol.2021.126312 | Global Ecosystem Dynamics Investigation |
2020 | Adam, M., M. Urbazaev, C. Dubois, and C. Schmullius. 2020. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sensing. 12(23):3948. https://doi.org/10.3390/rs12233948 | Global Ecosystem Dynamics Investigation |
2020 | Boucher, P., S. Hancock, D. Orwig, L. Duncanson, J. Armston, H. Tang, K. Krause, B. Cook, I. Paynter, Z. Li, A. Elmes, and C. Schaaf. 2020. Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation. Remote Sensing. 12(8):1304. https://doi.org/10.3390/rs12081304 | Global Ecosystem Dynamics Investigation |
2020 | Duncanson, L., A. Neuenschwander, S. Hancock, N. Thomas, T. Fatoyinbo, M. Simard, C.A. Silva, J. Armston, S.B. Luthcke, M. Hofton, J.R. Kellner, and R. Dubayah. 2020. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment. 242:111779. https://doi.org/10.1016/j.rse.2020.111779 | Global Ecosystem Dynamics Investigation |
2020 | Fayad, I., N. Baghdadi, J.S. Bailly, F. Frappart, and M. Zribi. 2020. Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sensing. 12(17):2714. https://doi.org/10.3390/rs12172714 | Global Ecosystem Dynamics Investigation |
2020 | Healey, S.P., Z. Yang, N. Gorelick, and S. Ilyushchenko. 2020. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sensing. 12(17):2840. https://doi.org/10.3390/rs12172840 | Global Ecosystem Dynamics Investigation |
2020 | Kumar, S., H. Govil, P.K. Srivastava, P.K. Thakur, and S.P.S. Kushwaha. 2020. Spaceborne Multifrequency PolInSAR-Based Inversion Modelling for Forest Height Retrieval. Remote Sensing. 12(24):4042. https://doi.org/10.3390/rs12244042 | Global Ecosystem Dynamics Investigation |
2020 | Marselis, S.M., K. Abernethy, A. Alonso, J. Armston, T.R. Baker, J.F. Bastin, J. Bogaert, D.S. Boyd, P. Boeckx, D.F.R.P. Burslem, R. Chazdon, D.B. Clark, D. Coomes, L. Duncanson, S. Hancock, R. Hill, C. Hopkinson, E. Kearsley, J.R. Kellner, D. Kenfack, N. Labriere, S.L. Lewis, D. Minor, H. Memiaghe, A. Monteagudo, R. Nilus, M. O'Brien, O.L. Phillips, J. Poulsen, H. Tang, H. Verbeeck, and R. Dubayah. 2020. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Global Ecology and Biogeography. 29(10):1799-1816. https://doi.org/10.1111/geb.13158 | Global Ecosystem Dynamics Investigation |
2020 | Sanchez-Lopez, N., L. Boschetti, A.T. Hudak, S. Hancock, and L.I. Duncanson. 2020. Estimating Time Since the Last Stand-Replacing Disturbance (TSD) from Spaceborne Simulated GEDI Data: A Feasibility Study. Remote Sensing. 12(21):3506. https://doi.org/10.3390/rs12213506 | Global Ecosystem Dynamics Investigation |
2020 | Tan, P., J. Zhu, H. Fu, C. Wang, Z. Liu, and C. Zhang. 2020. Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data. Sensors. 20(24):7304. https://doi.org/10.3390/s20247304 | Global Ecosystem Dynamics Investigation |
2019 | Fagua, J.C., P. Jantz, S. Rodriguez-Buritica, L. Duncanson, and S.J. Goetz. 2019. Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sensing. 11(22):2697. https://doi.org/10.3390/rs11222697 | Global Ecosystem Dynamics Investigation |
2019 | Hancock, S., J. Armston, M. Hofton, X. Sun, H. Tang, L.I. Duncanson, J.R. Kellner, and R. Dubayah. 2019. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth and Space Science. 6(2):294-310. https://doi.org/10.1029/2018EA000506 | Global Ecosystem Dynamics Investigation |
2019 | Kellner, J.R., J. Armston, M. Birrer, K.C. Cushman, L. Duncanson, C. Eck, C. Falleger, B. Imbach, K. Kral, M. Krucek, J. Trochta, T. Vrska, and C. Zgraggen. 2019. New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in Geophysics. 40(4):959-977. https://doi.org/10.1007/s10712-019-09529-9 | Global Ecosystem Dynamics Investigation |
2019 | Klein, V. and P. Axelrad. 2019. Advanced multipath modeling and validation for GPS onboard the International Space Station. Navigation. 66(3):559-575. https://doi.org/10.1002/navi.327 | Global Ecosystem Dynamics Investigation |
2019 | Qi, W., S. Saarela, J. Armston, G. Stahl, and R. Dubayah. 2019. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sensing of Environment. 232:111283. https://doi.org/10.1016/j.rse.2019.111283 | Global Ecosystem Dynamics Investigation |
2019 | Qi, W., S.K. Lee, S. Hancock, S. Luthcke, H. Tang, J. Armston, and R. Dubayah. 2019. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment. 221:621-634. https://doi.org/10.1016/j.rse.2018.11.035 | Global Ecosystem Dynamics Investigation |
2019 | Quegan, S., T. Le Toan, J. Chave, J. Dall, J.F. Exbrayat, D.H.T. Minh, M. Lomas, M.M. D'Alessandro, P. Paillou, K. Papathanassiou, F. Rocca, S. Saatchi, K. Scipal, H. Shugart, T.L. Smallman, M.J. Soja, S. Tebaldini, L. Ulander, L. Villard, and M. Williams. 2019. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment. 227:44-60. https://doi.org/10.1016/j.rse.2019.03.032 | Global Ecosystem Dynamics Investigation |
2019 | Scarth, P., J. Armston, R. Lucas, and P. Bunting. 2019. A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR, and Landsat Sensor Data. Remote Sensing. 11(2):147. https://doi.org/10.3390/rs11020147 | Global Ecosystem Dynamics Investigation |
2019 | Tang, H., J. Armston, S. Hancock, S. Marselis, S. Goetz, and R. Dubayah. 2019. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment. 231:111262. https://doi.org/10.1016/j.rse.2019.111262 | Global Ecosystem Dynamics Investigation |
2019 | Tian, J., L. Wang, X. Li, D. Yin, H. Gong, S. Nie, C. Shi, R. Zhong, X. Liu, and R. Xu. 2019. Canopy Height Layering Biomass Estimation Model (CHL-BEM) with Full-Waveform LiDAR. Remote Sensing. 11(12):1446. https://doi.org/10.3390/rs11121446 | Global Ecosystem Dynamics Investigation |
2018 | Pereira, L., L. Furtado, E. Novo, S. Sant'Anna, V. Liesenberg, and T. Silva. 2018. Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Varzea Wetlands. Remote Sensing. 10(9):1355. https://doi.org/10.3390/rs10091355 | Global Ecosystem Dynamics Investigation |
2018 | Pourshamsi, M., M. Garcia, M. Lavalle, and H. Balzter. 2018. A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(10):3453-3463. https://doi.org/10.1109/JSTARS.2018.2868119 | Global Ecosystem Dynamics Investigation |
2018 | Saarela, S., S. Holm, S. Healey, H.E. Andersen, H. Petersson, W. Prentius, P. Patterson, E. Naesset, T. Gregoire, and G. Stahl. 2018. Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data. Remote Sensing. 10(11):1832. https://doi.org/10.3390/rs10111832 | Global Ecosystem Dynamics Investigation |
2018 | Silva, C.A., S. Saatchi, M. Garcia, N. Labriere, C. Klauberg, A. Ferraz, V. Meyer, K.J. Jeffery, K. Abernethy, L. White, K. Zhao, S.L. Lewis, and A.T. Hudak. 2018. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(10):3512-3526. https://doi.org/10.1109/JSTARS.2018.2816962 | Global Ecosystem Dynamics Investigation |
2017 | Mahoney, C. and C. Hopkinson. 2017. Continental Estimates of Canopy Gap Fraction by Active Remote Sensing. Canadian Journal of Remote Sensing. 43(4):345-359. https://doi.org/10.1080/07038992.2017.1346469 | Global Ecosystem Dynamics Investigation |
2017 | Mountrakis, G. and Y. Li. 2017. A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing. ISPRS Journal of Photogrammetry and Remote Sensing. 129:200-211. https://doi.org/10.1016/j.isprsjprs.2017.05.009 | Global Ecosystem Dynamics Investigation |
2016 | Qi, W. and R.O. Dubayah. 2016. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment. 187:253-266. https://doi.org/10.1016/j.rse.2016.10.018 | Global Ecosystem Dynamics Investigation |
2015 | Stysley, P.R., D.B. Coyle, R.B. Kay, R. Frederickson, D. Poulios, K. Cory, and G. Clarke. 2015. Long term performance of the High Output Maximum Efficiency Resonator (HOMER) laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar. Optics & Laser Technology. 68:67-72. https://doi.org/10.1016/j.optlastec.2014.11.001 | Global Ecosystem Dynamics Investigation |