Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home

Publications Citing Global Ecosystem Dynamics Investigation (GEDI)

The following 109 publications cited the Global Ecosystem Dynamics Investigation (GEDI) project.

YearCitationDataset or Project
2024Bourgoin, C., G. Ceccherini, M. Girardello, C. Vancutsem, V. Avitabile, P.S.A. Beck, R. Beuchle, L. Blanc, G. Duveiller, M. Migliavacca, G. Vieilledent, A. Cescatti, and F. Achard. 2024. Human degradation of tropical moist forests is greater than previously estimated. Nature. 631(8021):570-576. https://doi.org/10.1038/s41586-024-07629-0
2024Bourgoin, C., G. Ceccherini, M. Girardello, C. Vancutsem, V. Avitabile, P.S.A. Beck, R. Beuchle, L. Blanc, G. Duveiller, M. Migliavacca, G. Vieilledent, A. Cescatti, and F. Achard. 2024. Human degradation of tropical moist forests is greater than previously estimated. Nature. 631(8021):570-576. https://doi.org/10.1038/s41586-024-07629-0
2024Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4
2024Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4
2024Burns, P., C.R. Hakkenberg, and S.J. Goetz. 2024. Multi-resolution gridded maps of vegetation structure from GEDI. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03668-4
2024Campos, M.S., L.J. Anjos, E.B.d. Souza, F.G.S. Bezerra, A.M.M.d. Lima, D.R. Galbraith, and M. Adami. 2024. Prioritizing Amazon Forest conservation: Assessing potential biomass under climate change. Global Ecology and Conservation. 54:e03106. https://doi.org/10.1016/j.gecco.2024.e03106
2024Demol, M., N. Aguilar-Amuchastegui, G. Bernotaite, M. Disney, L. Duncanson, E. Elmendorp, A. Espejo, A. Furey, S. Hancock, J. Hansen, H. Horsley, S. Langa, M. Liang, A. Locke, V. Manjate, F. Mapanga, H. Omidvar, A. Parsons, E. Peneva-Reed, T. Perry, B.L. Puma Vilca, P. Rodríguez-Veiga, C. Sutcliffe, R. Upham, B. de Walque, and A. Burt. 2024. Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Communications Earth & Environment. 5(1). https://doi.org/10.1038/s43247-024-01448-x
2024Fararoda, R., R.S. Reddy, G. Rajashekar, T. Mayamanikandan, P. Mutyala, K. Satish, S.W. Pasha, and C. Jha. 2024. Improving plot-level above ground biomass estimation in tropical Indian forests. Ecological Informatics. 81:102621. https://doi.org/10.1016/j.ecoinf.2024.102621
2024Friedman, N.R. and V. Remeš. 2024. Dorsal and Ventral Plumage Coloration Evolve as Distinct Modules with Different Environmental Correlations. The American Naturalist. 203(4):528-534. https://doi.org/10.1086/728766
2024Holcomb, A., P. Burns, S. Keshav, and D.A. Coomes. 2024. Repeat GEDI footprints measure the effects of tropical forest disturbances. Remote Sensing of Environment. 308:114174. https://doi.org/10.1016/j.rse.2024.114174
2024Jha, N., S.P. Healey, Z. Yang, G. Ståhl, and M.G. Betts. 2024. Vicarious calibration of GEDI biomass with Landsat age data for understanding secondary forest carbon dynamics. Environmental Research Letters. 19(4):044062. https://doi.org/10.1088/1748-9326/ad3661
2024Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416
2024Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416
2024Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416
2024Li, H., T. Hiroshima, X. Li, M. Hayashi, and T. Kato. 2024. High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sensing of Environment. 312:114322. https://doi.org/10.1016/j.rse.2024.114322
2024Liu, X., C.S. Neigh, M. Pardini, and M. Forkel. 2024. Estimating forest height and above-ground biomass in tropical forests using P-band TomoSAR and GEDI observations. International Journal of Remote Sensing. 45(9):3129-3148. https://doi.org/10.1080/01431161.2024.2343134
2024May, P.B., M. Schlund, J. Armston, M.M. Kotowska, F. Brambach, A. Wenzel, and S. Erasmi. 2024. Mapping aboveground biomass in Indonesian lowland forests using GEDI and hierarchical models. Remote Sensing of Environment. 313:114384. https://doi.org/10.1016/j.rse.2024.114384
2024May, P.B., R.O. Dubayah, J.M. Bruening, and G.C. Gaines. 2024. Connecting spaceborne lidar with NFI networks: A method for improved estimation of forest structure and biomass. International Journal of Applied Earth Observation and Geoinformation. 129:103797. https://doi.org/10.1016/j.jag.2024.103797
2024May, P.B., R.O. Dubayah, J.M. Bruening, and G.C. Gaines. 2024. Connecting spaceborne lidar with NFI networks: A method for improved estimation of forest structure and biomass. International Journal of Applied Earth Observation and Geoinformation. 129:103797. https://doi.org/10.1016/j.jag.2024.103797
2024Pascual, A., A. Grau-Neira, E. Morales-Santana, F. Cereceda-Espinoza, J. Pérez-Quezada, A. Cárdenas Martínez, and T. Fuentes-Castillo. 2024. Old-growth mapping in Patagonia’s evergreen forests must integrate GEDI data to overcome NFI data limitations and to effectively support biodiversity conservation. Forest Ecology and Management. 568:122059. https://doi.org/10.1016/j.foreco.2024.122059
2024Pascual, A., A. Grau-Neira, E. Morales-Santana, F. Cereceda-Espinoza, J. Pérez-Quezada, A. Cárdenas Martínez, and T. Fuentes-Castillo. 2024. Old-growth mapping in Patagonia’s evergreen forests must integrate GEDI data to overcome NFI data limitations and to effectively support biodiversity conservation. Forest Ecology and Management. 568:122059. https://doi.org/10.1016/j.foreco.2024.122059
2024Pletcher, E., S. Smith-Tripp, D. Evans, and N.B. Schwartz. 2024. Evaluating global vegetation products for application in heterogeneous forest-savanna landscapes. International Journal of Remote Sensing. 45(2):492-507. https://doi.org/10.1080/01431161.2023.2299278
2024Pronk, M., A. Hooijer, D. Eilander, A. Haag, T. de Jong, M. Vousdoukas, R. Vernimmen, H. Ledoux, and M. Eleveld. 2024. DeltaDTM: A global coastal digital terrain model. Scientific Data. 11(1). https://doi.org/10.1038/s41597-024-03091-9
2024Sillett, S.C., M.E. Graham, J.P. Montague, M.E. Antoine, and G.W. Koch. 2024. Ground-based calibration for remote sensing of biomass in the tallest forests. Forest Ecology and Management. 561:121879. https://doi.org/10.1016/j.foreco.2024.121879
2024Tolan, J., H. Yang, B. Nosarzewski, G. Couairon, H.V. Vo, J. Brandt, J. Spore, S. Majumdar, D. Haziza, J. Vamaraju, T. Moutakanni, P. Bojanowski, T. Johns, B. White, T. Tiecke, and C. Couprie. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment. 300:113888. https://doi.org/10.1016/j.rse.2023.113888
2024Tolan, J., H. Yang, B. Nosarzewski, G. Couairon, H.V. Vo, J. Brandt, J. Spore, S. Majumdar, D. Haziza, J. Vamaraju, T. Moutakanni, P. Bojanowski, T. Johns, B. White, T. Tiecke, and C. Couprie. 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sensing of Environment. 300:113888. https://doi.org/10.1016/j.rse.2023.113888
2024Trew, B.T., D.P. Edwards, A.C. Lees, D.H. Klinges, R. Early, M. Svátek, R. Plichta, R. Matula, J. Okello, A. Niessner, M. Barthel, J. Six, E.E. Maeda, J. Barlow, R.O. do Nascimento, E. Berenguer, J. Ferreira, J. Sallo-Bravo, and I.M.D. Maclean. 2024. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nature Climate Change. 14(7):753-759. https://doi.org/10.1038/s41558-024-02031-0
2023Bullock, E.L., S.P. Healey, Z. Yang, R. Acosta, H. Villalba, K.P. Insfrán, J.B. Melo, S. Wilson, L. Duncanson, E. Næsset, J. Armston, S. Saarela, G. Ståhl, P.L. Patterson, and R. Dubayah. 2023. Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay’s national forest inventory. Environmental Research Letters. 18(8):085001. https://doi.org/10.1088/1748-9326/acdf03
2023Chen, S., C.E. Woodcock, T. Saphangthong, and P. Olofsson. 2023. Satellite data reveals a recent increase in shifting cultivation and associated carbon emissions in Laos. Environmental Research Letters. 18(11):114012. https://doi.org/10.1088/1748-9326/acffdd
2023Choi, C., M. Pardini, J. Armston, and K.P. Papathanassiou. 2023. Forest Biomass Mapping Using Continuous InSAR and Discrete Waveform Lidar Measurements: A TanDEM-X/GEDI Test Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 16:7675-7689. https://doi.org/10.1109/JSTARS.2023.3302026
2023Farrant, D.N., D.A. Roberts, C.M. D’Antonio, and A.E. Larsen. 2023. What follows fallow? Assessing revegetation patterns on abandoned sugarcane land in Hawai?i. Agriculture, Ecosystems & Environment. 355:108603. https://doi.org/10.1016/j.agee.2023.108603
2023Geremew, T., A. Gonsamo, W. Zewdie, and P. Pellikka. 2023. Extrapolation of canopy height and cover metrics of GEDI LiDAR in tropical montane forest ecosystem. African Geographical Review. 1-17. https://doi.org/10.1080/19376812.2023.2164865
2023Hoffrén, R., M.T. Lamelas, J. de la Riva, D. Domingo, A.L. Montealegre, A. García-Martín, and S. Revilla. 2023. Assessing GEDI-NASA system for forest fuels classification using machine learning techniques. International Journal of Applied Earth Observation and Geoinformation. 116:103175. https://doi.org/10.1016/j.jag.2022.103175
2023Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106
2023Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106
2023Holcomb, A., S.V. Mathis, D.A. Coomes, and S. Keshav. 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps. Science of Remote Sensing. 8:100106. https://doi.org/10.1016/j.srs.2023.100106
2023Hunka, N., M. Santoro, J. Armston, R. Dubayah, R.E. McRoberts, E. Næsset, S. Quegan, M. Urbazaev, A. Pascual, P.B. May, D. Minor, V. Leitold, P. Basak, M. Liang, J. Melo, M. Herold, N. Málaga, S. Wilson, P. Durán Montesinos, A. Arana, R. Ernesto De La Cruz Paiva, J. Ferrand, S. Keoka, J. Guerra-Hernández, and L. Duncanson. 2023. On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake. Environmental Research Letters. 18(12):124042. https://doi.org/10.1088/1748-9326/ad0b60
2023Hunka, N., M. Santoro, J. Armston, R. Dubayah, R.E. McRoberts, E. Næsset, S. Quegan, M. Urbazaev, A. Pascual, P.B. May, D. Minor, V. Leitold, P. Basak, M. Liang, J. Melo, M. Herold, N. Málaga, S. Wilson, P. Durán Montesinos, A. Arana, R. Ernesto De La Cruz Paiva, J. Ferrand, S. Keoka, J. Guerra-Hernández, and L. Duncanson. 2023. On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake. Environmental Research Letters. 18(12):124042. https://doi.org/10.1088/1748-9326/ad0b60
2023Lang, N., W. Jetz, K. Schindler, and J.D. Wegner. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution. 7(11):1778-1789. https://doi.org/10.1038/s41559-023-02206-6
2023Li, W., W. Guo, M. Pasgaard, Z. Niu, L. Wang, F. Chen, Y. Qin, and J. Svenning. 2023. Human fingerprint on structural density of forests globally. Nature Sustainability. 6(4):368-379. https://doi.org/10.1038/s41893-022-01020-5
2023Liang, M., L. Duncanson, J.A. Silva, and F. Sedano. 2023. Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat. Remote Sensing of Environment. 284:113367. https://doi.org/10.1016/j.rse.2022.113367
2023Lombardo, S., J. Kinney, D. Blake, S. Chase, A. Stovall, A. Siddiqi, K. Arquilla, S. Israel, D. Wood, and O. de Weck. 2023. Accessible satellite data decision support systems for Yurok Tribe forest management. Acta Astronautica. 213:777-791. https://doi.org/10.1016/j.actaastro.2023.09.040
2023May, P., K.S. McConville, G.G. Moisen, J. Bruening, and R. Dubayah. 2023. A spatially varying model for small area estimates of biomass density across the contiguous United States. Remote Sensing of Environment. 286:113420. https://doi.org/10.1016/j.rse.2022.113420
2023Nathaniel, J., G. Nyirjesy, C.D. Watson, C.M. Albrecht, and L.J. Klein. 2023. Above Ground Carbon Biomass Estimate with Physics-Informed Deep Network. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS52108.2023.10282838
2023Padalia, H., A. Prakash, and T. Watham. 2023. Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecological Informatics. 77:102234. https://doi.org/10.1016/j.ecoinf.2023.102234
2023Pascual, A., J. Guerra-Hernández, J. Armston, D.M. Minor, L.I. Duncanson, P.B. May, J.R. Kellner, and R. Dubayah. 2023. Assessing the performance of NASA’s GEDI L4A footprint aboveground biomass density models using National Forest Inventory and airborne laser scanning data in Mediterranean forest ecosystems. Forest Ecology and Management. 538:120975. https://doi.org/10.1016/j.foreco.2023.120975
2023Retallack, A., G. Finlayson, B. Ostendorf, K. Clarke, and M. Lewis. 2023. Remote sensing for monitoring rangeland condition: Current status and development of methods. Environmental and Sustainability Indicators. 19:100285. https://doi.org/10.1016/j.indic.2023.100285
2023Silveira, E.M., V.C. Radeloff, S. Martinuzzi, G.J. Martinez Pastur, J. Bono, N. Politi, L. Lizarraga, L.O. Rivera, L. Ciuffoli, Y.M. Rosas, A.M. Olah, G.I. Gavier-Pizarro, and A.M. Pidgeon. 2023. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment. 285:113391. https://doi.org/10.1016/j.rse.2022.113391
2023Silveira, E.M., V.C. Radeloff, S. Martinuzzi, G.J. Martinez Pastur, J. Bono, N. Politi, L. Lizarraga, L.O. Rivera, L. Ciuffoli, Y.M. Rosas, A.M. Olah, G.I. Gavier-Pizarro, and A.M. Pidgeon. 2023. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Remote Sensing of Environment. 285:113391. https://doi.org/10.1016/j.rse.2022.113391
2023V.C. Oliveira, P., X. Zhang, B. Peterson, and J.P. Ometto. 2023. Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest. Science of Remote Sensing. 100083. https://doi.org/10.1016/j.srs.2023.100083
2023Wang, X., X. Liu, Y. Wu, R. Chen, and S. Wang. 2023. Dynamic Assessment and Change Analysis of Ecosystem Service Value Based on Physical Assessment Method in Cili County, China. Forests. 14(5):869. https://doi.org/10.3390/f14050869
2022Chopping, M., Z. Wang, C. Schaaf, M.A. Bull, and R.R. Duchesne. 2022. Forest aboveground biomass in the southwestern United States from a MISR multi-angle index, 2000–2015. Remote Sensing of Environment. 275:112964. https://doi.org/10.1016/j.rse.2022.112964
2022Guo, Y., Y. Lin, W.Y. Chen, J. Ling, Q. Li, J. Michalski, and H. Zhang. 2022. New two-step species-level AGB estimation model applied to urban parks. Ecological Indicators. 145:109694. https://doi.org/10.1016/j.ecolind.2022.109694
2022Labrière, N., S.J. Davies, M.I. Disney, L.I. Duncanson, M. Herold, S.L. Lewis, O.L. Phillips, S. Quegan, S.S. Saatchi, D.G. Schepaschenko, K. Scipal, P. Sist, and J. Chave. 2022. Toward a forest biomass reference measurement system for remote sensing applications. Global Change Biology. 29(3):827-840. https://doi.org/10.1111/gcb.16497
2022Vangi, E., G. D’Amico, S. Francini, and G. Chirici. 2022. GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualization. Earth Science Informatics. 16(1):1109-1117. https://doi.org/10.1007/s12145-022-00915-3
2022Vangi, E., G. D’Amico, S. Francini, and G. Chirici. 2022. GEDI4R: an R package for NASA’s GEDI level 4 A data downloading, processing and visualization. Earth Science Informatics. 16(1):1109-1117. https://doi.org/10.1007/s12145-022-00915-3
2022Zhang, S., Y. Chen, Y. Lu, H. Guo, X. Guo, C. Liu, X. Zhou, and Y. Zhang. 2022. Spatial variability and driving factors of soil multifunctionality in drylands of China. Regional Sustainability. 3(3):223-232. https://doi.org/10.1016/j.regsus.2022.10.001
2024Elliott, L.H., J.C. Vogeler, J.D. Holbrook, B.R. Barry, and K.T. Vierling. 2024. Assessing GEDI data fusions to map woodpecker distributions and biodiversity hotspots. Environmental Research Letters. 19(9):094027. https://doi.org/10.1088/1748-9326/ad64eb
2024Leite, R.V., C. Amaral, C.S.R. Neigh, D.N. Cosenza, C. Klauberg, A.T. Hudak, L. Aragão, D.C. Morton, S. Coffield, T. McCabe, and C.A. Silva. 2024. Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.416
2024Mohite, J., S. Sawant, A. Pandit, M. Sakkan, S. Pappula, and A. Parmar. 2024. Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest. International Journal of Remote Sensing. 45(4):1304-1338. https://doi.org/10.1080/01431161.2024.2307944
2022Atmani, F., B. Bookhagen, and T. Smith. 2022. Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars. Remote Sensing. 14(12):2928. https://doi.org/10.3390/rs14122928
2022Duncanson, L., J.R. Kellner, J. Armston, R. Dubayah, D.M. Minor, S. Hancock, S.P. Healey, P.L. Patterson, S. Saarela, S. Marselis, C.E. Silva, J. Bruening, S.J. Goetz, H. Tang, M. Hofton, B. Blair, S. Luthcke, L. Fatoyinbo, K. Abernethy, A. Alonso, H.E. Andersen, P. Aplin, T.R. Baker, N. Barbier, J.F. Bastin, P. Biber, P. Boeckx, J. Bogaert, L. Boschetti, P.B. Boucher, D.S. Boyd, D.F.R.P. Burslem, S. Calvo-Rodriguez, J. Chave, R.L. Chazdon, D.B. Clark, D.A. Clark, W.B. Cohen, D.A. Coomes, P. Corona, K.C. Cushman, M.E.J. Cutler, J.W. Dalling, M. Dalponte, J. Dash, S. de-Miguel, S. Deng, P.W. Ellis, B. Erasmus, P.A. Fekety, A. Fernandez-Landa, A. Ferraz, R. Fischer, A.G. Fisher, A. Garcia-Abril, T. Gobakken, J.M. Hacker, M. Heurich, R.A. Hill, C. Hopkinson, H. Huang, S.P. Hubbell, A.T. Hudak, A. Huth, B. Imbach, K.J. Jeffery, M. Katoh, E. Kearsley, D. Kenfack, N. Kljun, N. Knapp, K. Kral, M. Krucek, N. Labriere, S.L. Lewis, M. Longo, R.M. Lucas, R. Main, J.A. Manzanera, R.V. Martinez, R. Mathieu, H. Memiaghe, V. Meyer, A.M. Mendoza, A. Monerris, P. Montesano, F. Morsdorf, E. Naesset, L. Naidoo, R. Nilus, M. O'Brien, D.A. Orwig, K. Papathanassiou, G. Parker, C. Philipson, O.L. Phillips, J. Pisek, J.R. Poulsen, H. Pretzsch, C. Rudiger, S. Saatchi, A. Sanchez-Azofeifa, N. Sanchez-Lopez, R. Scholes, C.A. Silva, M. Simard, A. Skidmore, K. Sterenczak, M. Tanase, C. Torresan, R. Valbuena, H. Verbeeck, T. Vrska, K. Wessels, J.C. White, L.J.T. White, E. Zahabu, and C. Zgraggen. 2022. Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment. 270:112845. https://doi.org/10.1016/j.rse.2021.112845
2022Fayad, I., N. Baghdadi, and F. Frappart. 2022. Comparative Analysis of GEDI's Elevation Accuracy from the First and Second Data Product Releases over Inland Waterbodies. Remote Sensing. 14(2):340. https://doi.org/10.3390/rs14020340
2022Lang, N., N. Kalischek, J. Armston, K. Schindler, R. Dubayah, and J.D. Wegner. 2022. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sensing of Environment. 268:112760. https://doi.org/10.1016/j.rse.2021.112760
2022Leite, R.V., C.A. Silva, E.N. Broadbent, C.H.d. Amaral, V. Liesenberg, D.R.A.d. Almeida, M. Mohan, S. Godinho, A. Cardil, C. Hamamura, B.L.d. Faria, P.H.S. Brancalion, A. Hirsch, G.E. Marcatti, A.P. Dalla Corte, A.M.A. Zambrano, M.B.T.d. Costa, E.A.T. Matricardi, A.L.d. Silva, L.R.R.Y. Goya, R. Valbuena, B.A.F.d. Mendonca, C.H.L. Silva Junior, L.E.O.C. Aragao, M. Garcia, J. Liang, T. Merrick, A.T. Hudak, J. Xiao, S. Hancock, L. Duncason, M.P. Ferreira, D. Valle, S. Saatchi, and C. Klauberg. 2022. Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment. 268:112764. https://doi.org/10.1016/j.rse.2021.112764
2022Liu, X., Y. Su, T. Hu, Q. Yang, B. Liu, Y. Deng, H. Tang, Z. Tang, J. Fang, and Q. Guo. 2022. Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment. 269:112844. https://doi.org/10.1016/j.rse.2021.112844
2021Bauer, L., N. Knapp, and R. Fischer. 2021. Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sensing. 13(22):4540. https://doi.org/10.3390/rs13224540
2021Chen, H., S.R. Cloude, and J.C. White. 2021. Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping: A Combined SINC + Legendre Approach. Remote Sensing. 13(15):2882. https://doi.org/10.3390/rs13152882
2021Di Tommaso, S., S. Wang, and D.B. Lobell. 2021. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environmental Research Letters. 16(12):125002. https://doi.org/10.1088/1748-9326/ac358c
2021DiMiceli, C., J. Townshend, M. Carroll, and R. Sohlberg. 2021. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sensing of Environment. 254:112271. https://doi.org/10.1016/j.rse.2020.112271
2021Dorado-Roda, I., A. Pascual, S. Godinho, C. Silva, B. Botequim, P. Rodriguez-Gonzalvez, E. Gonzalez-Ferreiro, and J. Guerra-Hernandez. 2021. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sensing. 13(12):2279. https://doi.org/10.3390/rs13122279
2021Fayad, I., D. Ienco, N. Baghdadi, R. Gaetano, C.A. Alvares, J.L. Stape, H. Ferraco Scolforo, and G. Le Maire. 2021. A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sensing of Environment. 265:112652. https://doi.org/10.1016/j.rse.2021.112652
2021Fayad, I., N. Baghdadi, and J. Riedi. 2021. Quality Assessment of Acquired GEDI Waveforms: Case Study over France, Tunisia and French Guiana. Remote Sensing. 13(16):3144. https://doi.org/10.3390/rs13163144
2021Fayad, I., N. Baghdadi, C. Alcarde Alvares, J.L. Stape, J.S. Bailly, H.F. Scolforo, I.R. Cegatta, M. Zribi, and G. Le Maire. 2021. Terrain Slope Effect on Forest Height and Wood Volume Estimation from GEDI Data. Remote Sensing. 13(11):2136. https://doi.org/10.3390/rs13112136
2021Kacic, P., A. Hirner, and E. Da Ponte. 2021. Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sensing. 13(24):5105. https://doi.org/10.3390/rs13245105
2021Kokalj, Ž. and J. Mast. 2021. Space lidar for archaeology? Reanalyzing GEDI data for detection of ancient Maya buildings. Journal of Archaeological Science: Reports. 36:102811. https://doi.org/10.1016/j.jasrep.2021.102811
2021Potapov, P., X. Li, A. Hernandez-Serna, A. Tyukavina, M.C. Hansen, A. Kommareddy, A. Pickens, S. Turubanova, H. Tang, C.E. Silva, J. Armston, R. Dubayah, J.B. Blair, and M. Hofton. 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment. 253:112165. https://doi.org/10.1016/j.rse.2020.112165
2021Rishmawi, K., C. Huang, and X. Zhan. 2021. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sensing. 13(3):442. https://doi.org/10.3390/rs13030442
2021Silva, C.A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, M. Simard, C.Z. Marshak, J. Armston, S. Lutchke, and R. Dubayah. 2021. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment. 253:112234. https://doi.org/10.1016/j.rse.2020.112234
2021Spracklen, B. and D.V. Spracklen. 2021. Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sensing. 13(7):1233. https://doi.org/10.3390/rs13071233
2021Vittucci, C., L. Guerriero, P. Ferrazzoli, P. Richaume, and Y.H. Kerr. 2021. SMOS L-VOD Retrieved by Level 2 Algorithm and its Correlation With GEDI LIDAR Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14:11870-11878. https://doi.org/10.1109/JSTARS.2021.3128022
2021Xiang, J., H. Li, J. Zhao, X. Cai, and P. Li. 2021. Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. Journal of Hydrology. 597:126312. https://doi.org/10.1016/j.jhydrol.2021.126312
2020Adam, M., M. Urbazaev, C. Dubois, and C. Schmullius. 2020. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sensing. 12(23):3948. https://doi.org/10.3390/rs12233948
2020Boucher, P., S. Hancock, D. Orwig, L. Duncanson, J. Armston, H. Tang, K. Krause, B. Cook, I. Paynter, Z. Li, A. Elmes, and C. Schaaf. 2020. Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation. Remote Sensing. 12(8):1304. https://doi.org/10.3390/rs12081304
2020Duncanson, L., A. Neuenschwander, S. Hancock, N. Thomas, T. Fatoyinbo, M. Simard, C.A. Silva, J. Armston, S.B. Luthcke, M. Hofton, J.R. Kellner, and R. Dubayah. 2020. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment. 242:111779. https://doi.org/10.1016/j.rse.2020.111779
2020Fayad, I., N. Baghdadi, J.S. Bailly, F. Frappart, and M. Zribi. 2020. Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sensing. 12(17):2714. https://doi.org/10.3390/rs12172714
2020Healey, S.P., Z. Yang, N. Gorelick, and S. Ilyushchenko. 2020. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sensing. 12(17):2840. https://doi.org/10.3390/rs12172840
2020Kumar, S., H. Govil, P.K. Srivastava, P.K. Thakur, and S.P.S. Kushwaha. 2020. Spaceborne Multifrequency PolInSAR-Based Inversion Modelling for Forest Height Retrieval. Remote Sensing. 12(24):4042. https://doi.org/10.3390/rs12244042
2020Marselis, S.M., K. Abernethy, A. Alonso, J. Armston, T.R. Baker, J.F. Bastin, J. Bogaert, D.S. Boyd, P. Boeckx, D.F.R.P. Burslem, R. Chazdon, D.B. Clark, D. Coomes, L. Duncanson, S. Hancock, R. Hill, C. Hopkinson, E. Kearsley, J.R. Kellner, D. Kenfack, N. Labriere, S.L. Lewis, D. Minor, H. Memiaghe, A. Monteagudo, R. Nilus, M. O'Brien, O.L. Phillips, J. Poulsen, H. Tang, H. Verbeeck, and R. Dubayah. 2020. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness. Global Ecology and Biogeography. 29(10):1799-1816. https://doi.org/10.1111/geb.13158
2020Sanchez-Lopez, N., L. Boschetti, A.T. Hudak, S. Hancock, and L.I. Duncanson. 2020. Estimating Time Since the Last Stand-Replacing Disturbance (TSD) from Spaceborne Simulated GEDI Data: A Feasibility Study. Remote Sensing. 12(21):3506. https://doi.org/10.3390/rs12213506
2020Tan, P., J. Zhu, H. Fu, C. Wang, Z. Liu, and C. Zhang. 2020. Sub-Canopy Topography Estimation from TanDEM-X DEM by Fusing ALOS-2 PARSAR-2 InSAR Coherence and GEDI Data. Sensors. 20(24):7304. https://doi.org/10.3390/s20247304
2019Fagua, J.C., P. Jantz, S. Rodriguez-Buritica, L. Duncanson, and S.J. Goetz. 2019. Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sensing. 11(22):2697. https://doi.org/10.3390/rs11222697
2019Hancock, S., J. Armston, M. Hofton, X. Sun, H. Tang, L.I. Duncanson, J.R. Kellner, and R. Dubayah. 2019. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth and Space Science. 6(2):294-310. https://doi.org/10.1029/2018EA000506
2019Kellner, J.R., J. Armston, M. Birrer, K.C. Cushman, L. Duncanson, C. Eck, C. Falleger, B. Imbach, K. Kral, M. Krucek, J. Trochta, T. Vrska, and C. Zgraggen. 2019. New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surveys in Geophysics. 40(4):959-977. https://doi.org/10.1007/s10712-019-09529-9
2019Klein, V. and P. Axelrad. 2019. Advanced multipath modeling and validation for GPS onboard the International Space Station. Navigation. 66(3):559-575. https://doi.org/10.1002/navi.327
2019Qi, W., S. Saarela, J. Armston, G. Stahl, and R. Dubayah. 2019. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sensing of Environment. 232:111283. https://doi.org/10.1016/j.rse.2019.111283
2019Qi, W., S.K. Lee, S. Hancock, S. Luthcke, H. Tang, J. Armston, and R. Dubayah. 2019. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment. 221:621-634. https://doi.org/10.1016/j.rse.2018.11.035
2019Quegan, S., T. Le Toan, J. Chave, J. Dall, J.F. Exbrayat, D.H.T. Minh, M. Lomas, M.M. D'Alessandro, P. Paillou, K. Papathanassiou, F. Rocca, S. Saatchi, K. Scipal, H. Shugart, T.L. Smallman, M.J. Soja, S. Tebaldini, L. Ulander, L. Villard, and M. Williams. 2019. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment. 227:44-60. https://doi.org/10.1016/j.rse.2019.03.032
2019Scarth, P., J. Armston, R. Lucas, and P. Bunting. 2019. A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR, and Landsat Sensor Data. Remote Sensing. 11(2):147. https://doi.org/10.3390/rs11020147
2019Tang, H., J. Armston, S. Hancock, S. Marselis, S. Goetz, and R. Dubayah. 2019. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment. 231:111262. https://doi.org/10.1016/j.rse.2019.111262
2019Tian, J., L. Wang, X. Li, D. Yin, H. Gong, S. Nie, C. Shi, R. Zhong, X. Liu, and R. Xu. 2019. Canopy Height Layering Biomass Estimation Model (CHL-BEM) with Full-Waveform LiDAR. Remote Sensing. 11(12):1446. https://doi.org/10.3390/rs11121446
2018Pereira, L., L. Furtado, E. Novo, S. Sant'Anna, V. Liesenberg, and T. Silva. 2018. Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Varzea Wetlands. Remote Sensing. 10(9):1355. https://doi.org/10.3390/rs10091355
2018Pourshamsi, M., M. Garcia, M. Lavalle, and H. Balzter. 2018. A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(10):3453-3463. https://doi.org/10.1109/JSTARS.2018.2868119
2018Saarela, S., S. Holm, S. Healey, H.E. Andersen, H. Petersson, W. Prentius, P. Patterson, E. Naesset, T. Gregoire, and G. Stahl. 2018. Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data. Remote Sensing. 10(11):1832. https://doi.org/10.3390/rs10111832
2018Silva, C.A., S. Saatchi, M. Garcia, N. Labriere, C. Klauberg, A. Ferraz, V. Meyer, K.J. Jeffery, K. Abernethy, L. White, K. Zhao, S.L. Lewis, and A.T. Hudak. 2018. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(10):3512-3526. https://doi.org/10.1109/JSTARS.2018.2816962
2017Mahoney, C. and C. Hopkinson. 2017. Continental Estimates of Canopy Gap Fraction by Active Remote Sensing. Canadian Journal of Remote Sensing. 43(4):345-359. https://doi.org/10.1080/07038992.2017.1346469
2017Mountrakis, G. and Y. Li. 2017. A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing. ISPRS Journal of Photogrammetry and Remote Sensing. 129:200-211. https://doi.org/10.1016/j.isprsjprs.2017.05.009
2016Qi, W. and R.O. Dubayah. 2016. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment. 187:253-266. https://doi.org/10.1016/j.rse.2016.10.018
2015Stysley, P.R., D.B. Coyle, R.B. Kay, R. Frederickson, D. Poulios, K. Cory, and G. Clarke. 2015. Long term performance of the High Output Maximum Efficiency Resonator (HOMER) laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar. Optics & Laser Technology. 68:67-72. https://doi.org/10.1016/j.optlastec.2014.11.001