Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home > Get Data > NASA Projects > Carbon Monitoring System (CMS) > User guide

LiDAR Surveys over Selected Forest Research Sites, Brazilian Amazon, 2008-2018

Documentation Revision Date: 2019-12-31

Dataset Version: 1

Summary

This dataset provides the complete catalog of point cloud data collected during LiDAR surveys over selected forest research sites across the Amazon rainforest in Brazil between 2008 and 2018 for the Sustainable Landscapes Brazil Project. Flight lines were selected to overfly key field research sites in the Brazilian states of Acre, Amazonas, Bahia, Goias, Mato Grosso, Para, Rondonia, Santa Catarina, and Sao Paulo. The point clouds have been georeferenced, noise-filtered, and corrected for misalignment of overlapping flight lines. They are provided in 1 km2 tiles. The data were collected to measure forest canopy structure across Amazonian landscapes to monitor the effects of selective logging on forest biomass and carbon balance, and forest recovery over time.

This data set contains 3,166 files in compressed LAS (*.laz) file format and two companion files with tabular and spatial summaries of the LAS file contents and extents for each of the tiles.

Figure 1. Bounding boxes for LiDAR tiles from surveys over western Para, Brazil are depicted in Google Earth from the KMZ companion file. Each feature in the KMZ provides key metadata about the corresponding tile.

Citation

dos-Santos, M.N., M.M. Keller, and D.C. Morton. 2019. LiDAR Surveys over Selected Forest Research Sites, Brazilian Amazon, 2008-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1644

Table of Contents

  1. Dataset Overview
  2. Data Characteristics
  3. Application and Derivation
  4. Quality Assessment
  5. Data Acquisition, Materials, and Methods
  6. Data Access
  7. References

Dataset Overview

This dataset provides the complete catalog of point cloud data collected during LiDAR surveys over selected forest research sites across the Amazon rainforest in Brazil between 2008 and 2018 for the Sustainable Landscapes Brazil Project. Flight lines were selected to overfly key field research sites in the Brazilian states of Acre, Amazonas, Bahia, Goias, Mato Grosso, Para, Rondonia, Santa Catarina, and Sao Paulo. The point clouds have been georeferenced, noise-filtered, and corrected for misalignment of overlapping flight lines. They are provided in 1 km2 tiles. The data were collected to measure forest canopy structure across Amazonian landscapes to monitor the effects of selective logging on forest biomass and carbon balance, and forest recovery over time.

Project: Carbon Monitoring System (CMS)

The CMS is designed to make significant contributions in characterizing, quantifying, understanding, and predicting the evolution of global carbon sources and sinks through improved monitoring of carbon stocks and fluxes. The System will use the full range of NASA satellite observations and modeling/analysis capabilities to establish the accuracy, quantitative uncertainties, and utility of products for supporting national and international policy, regulatory, and management activities. CMS will maintain a global emphasis while providing finer scale regional information, utilizing space-based and surface-based data.

Related Publications:

Citations for the numerous related publications are given in the main reference section of this document, Section 7.

Related Datasets:

dos-Santos, M.N., and M.M. Keller. 2016. CMS: Forest Inventory and Biophysical Measurements, Para, Brazil, 2012-2014. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1301

dos-Santos, M.N., and M.M. Keller. 2016. CMS: LiDAR Data for Forested Areas in Paragominas, Para, Brazil, 2012-2014. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1302

Keller, M.M., P. Duffy, and W. Barnett. 2019. LiDAR and PALSAR-Derived Forest Aboveground Biomass, Paragominas, Para, Brazil, 2012. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1648

Acknowledgements:

LiDAR surveys performed through the Sustainable Landscapes project were commissioned by the United States Forest Service in collaboration with the Brazilian Enterprise for Agricultural Research (EMBRAPA) (https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/home) and are archived through the Carbon Monitoring System project funded by NASA.

Data Characteristics

Spatial Coverage: Selected areas of the Amazon Basin and other regions in Brazil

Spatial Resolution:  ~ 10 points per m2 provided in 1 km2 tiles over key field research sites

Temporal Coverage: June 2008 to August 2018

Temporal Resolution: single acquisition over most sites (multiple acquisition over some sites)

Study Area: (all latitude and longitudes given in decimal degrees)

Site Westernmost Longitude Easternmost Longitude Northernmost Latitude Southernmost Latitude
LiDAR flightlines over Brazil -68.2897 -39.058 -1.5794 -26.6964

 

Data File Information

This dataset contains 3,166 files in compressed LAS (*.laz) file format and two companion files, cms_brazil_lidar_tile_inventory.csv and cms_brazil_lidar_tile_inventory.kmz, with summaries of the LAS file contents. 

 

File organization and naming convention

Files are organized according to the Survey_reference_code given in Table 1 below.

For example, the reference code ANT_A01_2011_LiDAR associates the *.las data files collected at the "Floresta Estadual do Antimary" research site in 2011 with the metadata uuid shown in Table 1.

Please refer to the Sustainable Landscapes metadata for the definitions of the 3-character site codes and additional site descriptions.

 

File names begin with their respective Survey_reference_code and end with a sequential number identifying the specific 1 km2 tile data provided.

  • ANT_A01_2011_laz_0.laz
  • ANT_A01_2011_laz_1.laz
  • ANT_A01_2011_laz_11.laz

Note: not all file names follow this structure.  Please refer to specific survey reference code Sustainable Landscapes metadata for details about these alternatively-named files.

 

File format

The LAS standard is developed and maintained by the American Society for Photogrammetry and Remote Sensing (ASPRS; https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities) and is currently on version 1.4. These data are distributed in LAS versions 1.0 through 1.2. 

 

Table 1.  LiDAR survey information.

Survey_reference_code:  Associates the *.las data files collected at a research site in a given year with the metadata uuid.

utm:  Universal Transverse Mercator time zone for the specific survey reference code that is input for the Spatial Reference System (Well Known Text) provided below.

uuid:  Provides the link to the Sustainable Landscapes metadata record managed by EMBRAPA with research site and data collection details.

uuid link: https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/<UUID>

For example: https://www.paisagenslidar.cnptia.embrapa.br/geonetwork/srv/por/catalog.search#/metadata/3da138cf-661c-4d2f-93bf-a8d75117df51

State* Survey_reference_code utm uuid
AC ANT_A01_2011_LiDAR 19S 3da138cf-661c-4d2f-93bf-a8d75117df51
AC BON_A01_2013_LiDAR 19S 9e45ff2c-427d-48ec-a252-b6fb9c519ff4
AC HUM_A01_2013_LiDAR 19S af42b430-fe12-4045-98d1-44304c42b2c0
AC RIB_A01_2014_LiDAR 19S a5e59f01-c6fc-4d44-a6d1-846ec3c542e8
AC TAL_A01_2013_LiDAR 19S 190f55bc-3fea-432e-b197-3d0c4864172e
AM BA3_A01_2014_LiDAR 20S 2f10b906-65bf-46ec-b617-80db15452064
AM BA3_A02_2014_LiDAR 20S ea4a6846-25e7-4d35-a12a-6b529d5b855b
AM BAR_A01_2014_LiDAR 20S fc649878-1f64-4369-af0a-e3e30853e10e
AM DUC_A01_2012_LiDAR 21S 4c65b6de-25e4-4d91-8015-d79b4c973534
AM DUC_A01_2017_LiDAR 20S 40678cdf-d0b4-49e1-a574-c3a2e36b0afa
AM ZF2_A01_2017_LiDAR 20S afc4b77d-b24d-40a6-ba2b-391d3cb10344
AM ZF2_A02_2017_LiDAR 20S a5291df5-887b-4199-8850-1181df879fd9
BA CON_A01_2015_LiDAR 24S ec45e4f0-96b8-425a-a500-bc7f52c3c23d
GO GO1_A01_2014_LiDAR 22S c8a06ed4-e725-4674-b999-f7141d2643c4
MT COT_A01_2011_LiDAR 21S 30293dd1-801d-4b5a-bb2e-e4bce6e845d0
MT FN1_A01_2013_LiDAR 22S ad364160-6076-46b3-84a7-457419f61b5a
MT FN1_A01_2016_LiDAR 21S 2426a1ed-53f6-4344-b6a0-84468ff5c4f6
MT FN2_A01_2013_LiDAR 21S 42fca3ef-ba02-4992-b25f-a40bca98ced8
MT FN2_A01_2016_LiDAR 21S b8bffa7f-ca25-452f-9fd1-ef92222a9479
MT FN3_A01_2014_LiDAR 21S d13c982c-3de4-450d-93c8-9133d5231817
MT FNA_A01_2013_LiDAR 21S b3d6585d-7ade-4a64-8baf-feec61768f00
MT FNB_A01_2014_LiDAR 21S a12c2729-71f3-4a3d-ac4e-746e9c414c56
MT FNC_A01_2017_LiDAR 21S 80ba6571-0f92-436c-9e39-bb8cc9055272
MT FNC_A02_2017_LiDAR 21S b3c61b01-0308-40e3-8fa3-1a09a3f389f3
MT FNC_A03_2017_LiDAR 21S def96254-96a6-4625-b5dd-7e4569c1d381
MT FNC_A04_2017_LiDAR 21S a983d75d-7edc-425d-8d1b-501e257c4906
MT FND_A01_2017_LiDAR 21S 29c05dda-2b32-4cfa-9de9-8ce5a98c7edc
MT FND_A02_2017_LiDAR 21S 6062b245-b03c-4425-8527-b87784fce534
MT FND_A03_2017_LiDAR 21S e8afd457-e17f-4716-b02a-a0d1309203fb
MT TAN_A01_2012_LiDAR 22S 4ea1d55a-fb4c-49cf-bb78-192136307420
MT TAN_A01_2014_LiDAR 22S 82aa594b-30d5-4c70-83e2-f71809a6f703
MT FN3_A01_2017_LiDAR 21S 257c32e8-e5b4-4808-b826-ff6d2bcf4536
PA ANA_A01_2017_LiDAR 21S 5ad640b7-6c98-4042-9338-6be706955ca4
PA AND_A01_2013_LiDAR 23S 465c4897-a586-4270-9232-c65ee346fcd0
PA AND_A01_2017_LiDAR 23S 4b75ccab-e0e5-46d8-bbb0-5963943402e9
PA CAU_A01_2017_LiDAR 22S 79f764e6-c4fc-40e5-bf8b-84b883e2ab92
PA FST_A01_2013_LiDAR 21S ee14db64-23b6-40f8-8a88-f446b10218cb
PA PAR_A01_2017_LiDAR 23S ec312711-d296-4ef2-a802-4a27cb4beb83
PA PRG_A01_2017_LiDAR 23S 4d512f9d-fbd9-4b0e-95d7-2f8f5cca04b9
PA SAN_A01_2014_LiDAR 21S 062144b9-69a8-420c-9d35-360d313f7adc
PA SAN_A02_2014_LiDAR 21S c97bd3e4-5d16-4218-9c83-33fd32d79624
PA SFX_A01_2012_LiDAR 22S a3bb4f79-ef32-4b28-8295-2d963a1044e5
PA SFX_A02_2012_LiDAR 22S fba0d5c5-d60a-483b-bc9e-cbc54a5979e0
PA ST1_A01_2013_LiDAR 21S c52a2c00-8ed7-4c0c-9366-e7d5facd1ced
PA ST1_A01_2016_LiDAR 21S e34bc4ba-674a-445d-9365-05df77c4287d
PA ST2_A01_2013_LiDAR 21S ca02d0b5-959b-40b9-a22d-30b8cc00ef23
PA ST2_A01_2016_LiDAR 21S 50a301bb-4b9a-4dff-9f0c-fa4144918506
PA ST3_A01_2014_LiDAR 21S 39f6df78-0dde-49ca-9e51-35fdf93f28b0
PA ST3_A01_2017_LiDAR 21S bd961041-d584-47d2-9575-548516d3bbea
PA TAC_A01_2013_LiDAR 22S 1acdce2c-264f-4b8d-ae5d-1d7d5d14afba
PA TAP_A01_2012_LiDAR 21S db302dc9-3e3b-442e-98a6-4ed4163a8ca6
PA TAP_A01_2017_LiDAR 21S cdf55e86-4bf6-4a63-b75b-45c4b236ddb7
PA TAP_A02_2012_LiDAR 21S 8337185e-9053-4ae4-a796-543d1d24d34b
PA TAP_A02_2013_LiDAR 21S 1c5a0098-b3ae-40c0-bfdb-eeb813ded3f1
PA TAP_A02_2016_LiDAR 21S 8c8192b3-139c-4d57-89dd-8a90d17d5d37
PA TAP_A03_2012_LiDAR 21S c21c5f32-40a1-422a-aba9-579728a8a7ee
PA TAP_A03_2013_LiDAR 21S c41c8541-8f4e-4fcf-8f2a-cf5ba6a2fd3d
PA TAP_A03_2016_LiDAR 21S 77e46065-808b-4593-b0bb-e1690e482354
RO JAM_A01_2011_LiDAR 20S 1582bba0-1eee-4c87-b1e9-d888636b67ba
RO JAM_A02_2011_LiDAR 20S 5170c140-e3c5-4c59-8b28-6e970345acc1
RO JAM_A02_2013_LiDAR 20S 67dd1511-3088-4721-9016-510c5f0c0961
RO JAM_A03_2013_LiDAR 20S 01f90c54-1de6-4a87-8567-0fec94ebdb94
SC CAG_A01_2013_LiDAR 22S 355d9e5f-4d37-4855-97cf-e85ffa060b90
SC MMA_A01_2017_LiDAR 22S a4d2f161-828e-4093-ac7d-e2622713c31f
SP CAN_A01_2014_LIDAR 23S f60019ac-749e-4343-8ab0-c517db3abf47
SP CAN_A01_2017_LIDAR 23S ead39fd8-c6d5-4e3b-8bb3-c96e1f708e81
SP CAN_A02_2014_LIDAR 23S 22dddcd7-6f89-40b0-a9b7-16c23977ef28
SP CAN_A02_2017_LIDAR 23S 26a4334f-90c9-4e97-b499-39e3082a12ca
SP SDM_A01_2012_LiDAR 23S 592a857f-9e3f-46b8-9774-5973bcf0cabb
SP SDM_A01_2017_LiDAR 23S 2a70b81c-fa04-4c1d-b442-7f60bafb7648

State codes in the leftmost column refer to the Brazilian states of Acre (AC), Amazonas (AM), Bahia (BA), Goias (GO), Mato Grosso (MT), Para (PA), Rondonia (RO), Santa Catarina (SC), and Sao Paulo (SP).

 

Spatial Reference System (Well Known Text)

Note -- these data are located across six Universal Transverse Mercator (UTM) zones: 19S, 20S, 21S, 22S, 23S, and 24S.  Please refer to Table 1 for the UTM zone for a respective survey reference code and file.

The OGC standard Well Known Text representation of the UTM system used for these data:

PROJCS["WGS 84 / UTM zone __S", ### Seven zones: 19, 20, 21, 22, 23, 24
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.01745329251994328,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",___], ### Varies by zone: -69, -63, -57, -51, -45, -39
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",10000000],
    AUTHORITY["EPSG","327__"], ### Varies by zone: 32719, 32720, 32721, 32722, 32723, 32724
    AXIS["Easting",EAST],
    AXIS["Northing",NORTH]]

 

Companion File Information

Please see the companion files cms_brazil_lidar_tile_inventory.csv and cms_brazil_lidar_tile_inventory.kmz for tabular and spatial summaries of the LAS file content. 

Both provide similar information about the LiDAR inventory:

Field Description
filename filename
max_lat maximum latitude extent (decimal degrees)
min_lat minimum latitude extent (decimal degrees)
max_lon maximum longitude extent (decimal degrees)
min_lon minimum longitude extent (decimal degrees)
file_type  always "pointcloud"
file_size_mb size of the file in megabytes
file_format always "LAS/LAZ"
version LAS specification version (always from v1.0, v1.1, v1.2)
created file creation date
utmzone UTM zone given as "##S" (always from 19S, 20S, 21S, 22S, 23S, 24S)
srs proj4 string for the UTM zone
download direct HTTPS download link (like: https://daac.ornl.gov/daacdata/cms/LiDAR_Forest_Inventory_Brazil/data/<FILE>.laz)

Application and Derivation

These LiDAR acquisitions are meant to measure forest canopy structure across Amazonian landscapes to monitor the effects of selective logging on forest biomass and carbon balance and forest recovery over time.

Quality Assessment

Checks for horizontal and vertical accuracy, and other standard quality control measures were performed by affiliated LiDAR survey vendors. Please refer to http://mapas.cnpm.embrapa.br/paisagenssustentaveis/ for vendor information. 

Data Acquisition, Materials, and Methods

Project Overview

Brazilian tropical forests contain approximately one-third of the global carbon stock in above-ground tropical forest biomass. Deforestation has cleared about 15% of the extensive forest on the Brazilian Amazon frontier. Logging, and understory forest fires may have degraded a similar area of forest. In response to the potential climatic effects of deforestation, policy makers have suggested reductions in emissions through deforestation and forest degradation and enhanced forest carbon stocks (REDD+). Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. 

Degradation is more difficult to detect than deforestation. This LiDAR inventory will continue to help researchers to quantify carbon stocks and changes and associated uncertainties in the Brazilian Amazon.

LiDAR Acquisition

LiDAR surveys were flown between June 2008 and August 2018. The data were collected and processed to point cloud files by commercial vendors under several grants, and incorporated into the broader integrated effort of the Sustainable Landscapes project. Sustainable Landscapes is supported by the United States Agency for International Development (USAID) and US Department of State. LiDAR surveys performed through the Sustainable Landscapes project were commissioned by the United States Forest Service in collaboration with the Brazilian Enterprise for Agricultural Research (EMBRAPA) and are archived through the Carbon Monitoring System project funded by NASA.

EMBRAPA maintains a metadata portal for the Sustainable Landscapes project at: https://www.paisagenslidar.cnptia.embrapa.br/webgis/.

Data Access

These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

LiDAR Surveys over Selected Forest Research Sites, Brazilian Amazon, 2008-2018

Contact for Data Center Access Information:

References

Related Publications:

Andersen, Hans-Erik; McGaughey, Robert J.; Reutebuch, Stephen E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment. 94: 441-449. https://doi.org/10.1016/j.rse.2004.10.013 

Avitabile, V. , Herold, M. , Heuvelink, G. B., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J. , Ashton, P. S., Banin, L. , Bayol, N. , Berry, N. J., Boeckx, P. , Jong, B. H., DeVries, B. , Girardin, C. A., Kearsley, E. , Lindsell, J. A., Lopez-Gonzalez, G. , Lucas, R. , Malhi, Y. , Morel, A. , Mitchard, E. T., Nagy, L. , Qie, L. , Quinones, M. J., Ryan, C. M., Ferry, S. J., Sunderland, T. , Laurin, G. V., Gatti, R. C., Valentini, R. , Verbeeck, H. , Wijaya, A. and Willcock, S. (2016), An integrated pan-tropical biomass map using multiple reference datasets. Glob Change Biol, 22: 1406-1420. https://doi.org/10.1111/gcb.13139

Chen, Q.; Lu, D.; Keller, M.; Dos-Santos, M.N.; Bolfe, E.L.; Feng, Y.; Wang, C. Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. Remote Sens. 2016, 8, 21. https://doi.org/10.3390/rs8010021 

Görgens, E. B., Soares, C. P., Nunes, M. H. and Rodriguez, L. C. (2016), Characterization of Brazilian forest types utilizing canopy height profiles derived from airborne laser scanning. Appl Veg Sci, 19: 518-527. https://doi.org/10.1111/avsc.12224

Hunter, M. O., Keller, M., Victoria, D., and Morton, D. C.: Tree height and tropical forest biomass estimation, Biogeosciences, 10, 8385–8399, 2013. https://doi.org/10.5194/bg-10-8385-2013

Hunter MO, Keller M, Morton D, Cook B, Lefsky M, Ducey M, et al. (2015) Structural Dynamics of Tropical Moist Forest Gaps. PLoS ONE 10(7): e0132144. https://doi.org/10.1371/journal.pone.0132144

Jucker, T. , Caspersen, J. , Chave, J. , Antin, C. , Barbier, N. , Bongers, F. , Dalponte, M. , Ewijk, K. Y., Forrester, D. I., Haeni, M. , Higgins, S. I., Holdaway, R. J., Iida, Y. , Lorimer, C. , Marshall, P. L., Momo, S. , Moncrieff, G. R., Ploton, P. , Poorter, L. , Rahman, K. A., Schlund, M. , Sonké, B. , Sterck, F. J., Trugman, A. T., Usoltsev, V. A., Vanderwel, M. C., Waldner, P. , Wedeux, B. M., Wirth, C. , Wöll, H. , Woods, M. , Xiang, W. , Zimmermann, N. E. and Coomes, D. A. (2017), Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob Change Biol, 23: 177-190. https://doi.org/10.1111/gcb.13388

Leitold, V., Keller, M., Morton, D.C. et al. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Carbon Balance Manage 10, 3 (2015). https://doi.org/10.1186/s13021-015-0013-x

Leitold, V. , Morton, D. C., Longo, M. , dos Santos, M. N., Keller, M. and Scaranello, M. 2018. El Niño drought increased canopy turnover in Amazon forests. New Phytol, 219: 959-971. https://doi.org/10.1111/nph.15110

Longo, M., Keller, M., dos-Santos, M. N., Leitold, V., Pinagé, E. R., Baccini, A., Saatchi, S., Nogueira, E. M., Batistella, M., and Morton, D. C. ( 2016), Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon, Global Biogeochem. Cycles, 30, 1639– 1660, https://doi.org/10.1002/2016GB005465

Meyer, V., Saatchi, S., Clark, D. B., Keller, M., Vincent, G., Ferraz, A., Espírito-Santo, F., d'Oliveira, M. V. N., Kaki, D., and Chave, J.: Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes, Biogeosciences, 15, 3377–3390, 2018. https://doi.org/10.5194/bg-15-3377-2018

Yhasmin Mendes de Moura, Thomas Hilker, Alexei I. Lyapustin, Lênio Soares Galvão, João Roberto dos Santos, Liana O. Anderson, Célio Helder Resende de Sousa, Egidio Arai, Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data, Remote Sensing of Environment, Volume 171, 2015, Pages 278-290, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2015.10.015

Danielle I Rappaport, Douglas C Morton, Marcos Longo, Michael Keller, Ralph Dubayah, and Maiza Nara dos-Santos. 2018. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, Volume 13, Number 6, 065-113. https://doi.org/10.1088/1748-9326/aac331

Sato, L.Y.; Gomes, V.C.F.; Shimabukuro, Y.E.; Keller, M.; Arai, E.; Dos-Santos, M.N.; Brown, I.F.; Aragão, L.E.O.C. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sens. 2016, 8, 839. https://doi.org/10.3390/rs8100839

Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; Eitel, J.; Saatchi, S. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest. Remote Sens. 2017, 9, 1068. https://doi.org/10.3390/rs9101068

R. Treuhaft et al., "Tropical-Forest Biomass Estimation at X-Band From the Spaceborne TanDEM-X Interferometer," in IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 239-243, Feb. 2015. https://doi.org/10.1109/LGRS.2014.2334140