Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home > Get Data > NASA Projects > Atmospheric Tomography Mission (ATom) > User guide

ATom: Observed and Modeled Organic Aerosol Mass Concentrations, 2016-2017

Documentation Revision Date: 2023-07-13

Dataset Version: 1

Summary

This dataset provides airborne in situ observations of submicron organic aerosol (OA) mass concentrations during the first (mid-2016) and second (early-2017) global deployments of the Atmospheric Tomography Mission (ATom), as well as modeled submicron OA mass concentrations along the flight tracks from global chemistry models that implement a variety of commonly used representations of OA sources and chemistry. In situ observations include non-refractory submicron aerosols measured by the High-Resolution Aerosol Mass Spectrometer (HR-AMS), aerosol volume concentrations measured by the Aerosol Microphysical Properties package (AMP), black carbon mass content measured by the Single Particle Soot Photometer (NOAA SP2), and refractory and non-refractory aerosol composition measured by the Particle Analysis By Laser Mass Spectrometry (PALMS). Both observed and modeled data are provided at a 60-second temporal resolution. The data are provided in netCDF format.

There are 20 data files in netCDF (*.nc) format included in this dataset. All files were converted to netCDF format if the data provider submitted it in a different format.

Figure 1. ATom-1 flights during the August 2016 deployment. Red boxes indicate regions used for the latitude averaging of the model results. Source: Hodzic et al. (2020)

Citation

Campuzano-Jost, P., A. Hodzic, H. Bian, M. Chin, P.R. Colarco, D.A. Day, K.D. Froyd, B. Heinold, D.S. Jo, J.M. Katich, J.K. Kodros, B.A. Nault, J.R. Pierce, E.A. Ray, J. Schacht, G.P. Schill, J.C. Schroder, J.P. Schwarz, I. Tegen, S. Tilmes, K. Tsigaridis, P. Yu, and J.L. Jimenez. 2023. ATom: Observed and Modeled Organic Aerosol Mass Concentrations, 2016-2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1795

Table of Contents

  1. Dataset Overview
  2. Data Characteristics
  3. Application and Derivation
  4. Quality Assessment
  5. Data Acquisition, Materials, and Methods
  6. Data Access
  7. References

Dataset Overview

This dataset provides airborne in situ observations of submicron organic aerosol (OA) mass concentrations during the first (mid-2016) and second (early-2017) global deployments of the Atmospheric Tomography Mission (ATom), as well as modeled submicron OA mass concentrations along the flight tracks from global chemistry models that implement a variety of commonly used representations of OA sources and chemistry. In situ observations include non-refractory submicron aerosols measured by the High-Resolution Aerosol Mass Spectrometer (HR-AMS), aerosol volume concentrations measured by the Aerosol Microphysical Properties package (AMP), black carbon mass content measured by the Single Particle Soot Photometer (NOAA SP2), and refractory and non-refractory aerosol composition measured by the Particle Analysis By Laser Mass Spectrometry (PALMS). Both observed and modeled data are provided at a 60-second temporal resolution.

Project: Atmospheric Tomography Mission

The Atmospheric Tomography Mission (ATom) is a NASA Earth Venture Suborbital-2 mission to study the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere. ATom deployed an extensive gas and aerosol payload on the NASA DC-8 aircraft for systematic, global-scale sampling of the atmosphere, profiling continuously from 0.2 to 12 km altitude. Around-the-world flights were conducted in each of four seasons between 2016 and 2018.

Related Publication

Hodzic, A., P. Campuzano-Jost, H. Bian, M. Chin, P.R. Colarco, D.A. Day, K.D. Froyd, B. Heinold, D.S. Jo, J.M. Katich, and J.K. Kodros. 2020. Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics 20:4607–4635. https://doi.org/10.5194/acp-20-4607-2020

Related Datasets

Brock, C.A., A. Kupc, C.J. Williamson, K. Froyd, F. Erdesz, D.M. Murphy, G.P. Schill, D.W. Gesler, R.J. Mclaughlin, M. Richardson, N.L. Wagner, and J.C. Wilson. 2019. ATom: L2 In Situ Measurements of Aerosol Microphysical Properties (AMP). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1671

Jimenez, J.L., P. Campuzano-Jost, D.A. Day, B.A. Nault, D.J. Price, and J.C. Schroder. 2019. ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1716

Schwarz, J.P., and J.M. Katich. 2019. ATom: L2 In Situ Measurements from Single Particle Soot Photometer (SP2). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1672

Wofsy, S.C., S. Afshar, H.M. Allen, E.C. Apel, E.C. Asher, B. Barletta, et al. 2018. ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1581

Acknowledgments

This work was supported by NASA Earth Venture Suborbital-2 (grants NNX15AH33A, NNX15AJ23G).

Data Characteristics

Spatial Coverage: global

Spatial Resolution: Point (track) measurements

Temporal Coverage: 2016-07-29 to 2017-02-22

Temporal Resolution: 1 minute

Study Area: Latitude and longitude are given in decimal degrees.

Site Northernmost Latitude Southernmost Latitude Easternmost Longitude Westernmost Longitude
Global 90 -90 180 -180

Data File Information

There are 20 data files in netCDF (*.nc) format included in this dataset. All files were converted to netCDF format if the data provider submitted it in a different format. The files use the original naming scheme of the data provider. With the exception of files for the CESM1-CARMA model and files ending with "SVPOA" for the GC12-REF and GC12-DYN models, there is one ATom-1 and one ATom-2 file per model. See Table 1 for more information.

Table 1. File names and descriptions. See the related publication Hodzic et al. (2020) for details on the model configurations and references.

File Name Model Description
AEROCOM-ATom1-OAOC_DC8_20160729_R0.nc AeroCom-II Model output along the ATom-1 track. Data were originally submitted in the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) format.
AEROCOM-ATom2-OAOC_DC8_20170126_R0.nc AeroCom-II Model output along the ATom-2 track. Data were originally submitted in the ICARTT format.
ATOM13_CARMA_hs.nc CESM1-CARMA Model output along the ATom-1, ATom-2, and Atom-3 tracks.
CESM_VBS_waccm_ATom1.nc CESM2-DYN Model output along the ATom-1 track.
CESM_VBS_waccm_ATom2.nc CESM2-DYN Model output along the ATom-2 track.
CESM_waccm_ATom1.nc CESM2-SMP Model output along the ATom-1 track.
CESM_waccm_ATom2.nc CESM2-SMP Model output along the ATom-2 track.
CESMCARMA1-ATom1-AerosolComposition_DC8_20160729_R0.nc CESM1-CARMA Aerosol output along the ATom-1 track. Data were originally submitted in the ICARTT format.
ECHAM-HAM-ATOM_2016.nc ECHAM6-HAM Model output along the ATom-1 track.
ECHAM-HAM-ATOM_2017.nc ECHAM6-HAM Model output along the ATom-2 track.
GEOS_Chem_10_TOMAS_ATom1.nc GC10-TOMAS Model output along the ATom-1 track.
GEOS_Chem_10_TOMAS_ATom2.nc GC10-TOMAS Model output along the ATom-2 track.
GEOS_Chem_12_output_for_ATom1_SVPOA.nc GC12-REF Model output along the ATom-1 track using semi-volatile primary organic aerosol.
GEOS_Chem_12_output_for_ATom12.nc GC12-REF Model output along the ATom-1 and ATom-2 tracks.
GEOS_Chem_12_with_Hodzic2016_ATom1_SVPOA.nc GC12-DYN Model output along the ATom-1 track using semi-volatile primary organic aerosol.
GEOS_Chem_12_with_Hodzic2016_for_ATom12.nc GC12-DYN Model output along the ATom-1 and ATom-2 tracks. 
GEOS5_atom1.nc GEOS5 Model output along the ATom-1 track.
GEOS5_atom2.nc GEOS5 Model output along the ATom-2 track.
Observations-ATom1-PM1Aerosol_DC8_20160729_R0.nc - ATom-1 measurements used in the models. Data were originally submitted in the ICARTT format.
Observations-ATom2-PM1Aerosol_DC8_20170126_R0.nc - ATom-2 measurements used in the models. Data were originally submitted in the ICARTT format.

Data File Details

The lengths, units, etc. of dimensions and variables are not consistent across data files; the files are provided as originally submitted except for transformation into netCDF format if not submitted in that format.

For the two observations files (i.e., files beginning with the name "Observations"), the instruments and sources for measurements are as follows:

  • non-refractory submicron aerosols by the High-Resolution Aerosol Mass Spectrometer (HR-AMS; Jimenez et al., 2019)
  • aerosol volume concentrations by the Aerosol Microphysical Properties package (AMP; Brock et al. 2019)
  • black carbon mass content by the Single Particle Soot Photometer (NOAA SP2; Schwarz et al. 2019)
  • refractory and non-refractory aerosol composition by the Particle Analysis By Laser Mass Spectrometry (PALMS; Wofsy et al. 2018)

Generally, each file contains variable descriptions except for the files GEOS_Chem_10_TOMAS_ATom1.nc and GEOS_Chem_10_TOMAS_ATom2.nc.This information is included in Table 2.

Table 2. Variable names and descriptions for data files GEOS_Chem_10_TOMAS_ATom1.nc and GEOS_Chem_10_TOMAS_ATom2.nc. All aerosol products are output as a 15-bin size distribution.

Variable Units Description
State Parameters
POINT   point number
FLIGHT   platform NASA DC-8
YYYMMDD   date
HHMM UTC time
LAT degrees north latitude along the flight track
LON degrees east longitude along the flight track
PRESS mbar atmospheric pressure along the flight track
Temp K ambient temperature
Standard Model Output
NO kg kg-1 nitrous oxide
O3 kg kg-1 ozone
PAN kg kg-1 peroxyacetylnitrate
CO kg kg-1 carbon monoxide
ISOP kg kg-1 isoprene
HNO3 kg kg-1 nitric acid
H2O2 kg kg-1 water peroxide
ACET kg kg-1 acetone
MVK kg kg-1 methyl vinyl ketone
MACR kg kg-1 methacrolein
C3H8 kg kg-1 ethane
C2H6 kg kg-1 methane
DMS kg kg-1 dimethylsulfide
SO2 kg kg-1 sulfur dioxide
SO4 kg kg-1 fine particle sulfate from base model
SO4s kg kg-1 coarse particle sulfate from base model
MSA (particle) kg kg-1 methansulfonic acid
NH3 kg kg-1 ammonia
NH4 (g) kg kg-1 ammonium
NIT (aerosol) kg kg-1 fine particle nitrate
NITs (aerosol) kg kg-1 coarse particle nitrate
BCPI kg kg-1 black carbon, hydrophilic
OCPI kg kg-1 organic carbon, hydrophilic
BCPO kg kg-1 black carbon, hydrophobic
OCPO kg kg-1 organic carbon, hydrophilic
SALA kg kg-1 fine sea salt aerosol
SALC kg kg-1 coarse sea salt aerosol
CH3Br kg kg-1 methyl bromine
ISOPN kg kg-1 isoprene nitrate
NO2 kg kg-1 nitric oxide
NO3 kg kg-1 nitrate radical
HNO2 kg kg-1 nitrous acid
DST1 kg kg-1 dust aerosol; Ref = 0.7 microns
DST2 kg kg-1 dust aerosol; Ref = 1.4 microns
DST3 kg kg-1 dust aerosol; Ref = 2.4 microns
DST4 kg kg-1 dust aerosol; Ref = 4.5 microns
Microphysical Model Output
Mass per particle bin edges kg 1.60E-20, 6.40E-20, 2.56E-19, 1.02E-18, 4.10E-18, 1.64E-17, 6.55E-17, 2.62E-16, 1.05E-15, 4.19E-15, 1.68E-14, 6.71E-14, 2.68E-13, 1.07E-12, 3.44E-11, 1.10E-9
Approx. Bin MidPoint Diameter nm 3.3, 5.2, 8.2, 13.0, 20.7, 33.8, 52.1, 83.7, 131, 208, 331, 525, 834, 1871, 5941
H2SO4 µg m-3 sulfuric acid
NK1..NK15 cm-3 total aerosol number assuming an internally mixed population
SF1..SF15 cm-3 sulfate aerosol
SS1..SS15 cm-3 sea salt aerosol
ECIL1-ECIL15 cm-3 black carbon, internally mixed
ECOB1-ECOB15 cm-3 black carbon, externally mixed
OCIL1-OCIL15 cm-3 organic aerosol, hydrophilic
OCOB1-OCOB15 cm-3 organic aerosol, hydrophobic
DUST1-DUST15 cm-3 dust aerosol
AW1-AW15 cm-3 aerosol water

Application and Derivation

Organic aerosols and sulfate are major contributors by mass to submicron aerosols in the remote troposphere, and the spatial distribution and properties of submicron organic aerosol are among the key sources of uncertainty in understanding aerosol effects on climate. These data provide an extensive characterization of organic aerosol mass concentrations and their level of oxidation in the remote atmosphere. See Hodzic et al. (2020) for more information.

Quality Assessment

Hodzic et al. (2020) provides the accuracy and precision of each measurement and the performance of each model.

Data Acquisition, Materials, and Methods

Hodzic et al. (2020) provides the details of each measurement and the configuration of each model.

Data Access

These data are available through the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

ATom: Observed and Modeled Organic Aerosol Mass Concentrations, 2016-2017

Contact for Data Center Access Information:

References

Brock, C.A., A. Kupc, C.J. Williamson, K. Froyd, F. Erdesz, D.M. Murphy, G.P. Schill, D.W. Gesler, R.J. Mclaughlin, M. Richardson, N.L. Wagner, and J.C. Wilson. 2019. ATom: L2 In Situ Measurements of Aerosol Microphysical Properties (AMP). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1671

Hodzic, A., P. Campuzano-Jost, H. Bian, M. Chin, P.R. Colarco, D.A. Day, K.D. Froyd, B. Heinold, D.S. Jo, J.M. Katich, and J.K. Kodros. 2020. Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 20:4607-4635. https://doi.org/10.5194/acp-20-4607-2020

Jimenez, J.L., P. Campuzano-Jost, D.A. Day, B.A. Nault, D.J. Price, and J.C. Schroder. 2019. ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1716

Schwarz, J.P., and J.M. Katich. 2019. ATom: L2 In Situ Measurements from Single Particle Soot Photometer (SP2). ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1672

Wofsy, S.C., S. Afshar, H.M. Allen, E.C. Apel, E.C. Asher, B. Barletta, J. Bent, H. Bian, B.C. Biggs, D.R. Blake, N. Blake, I. Bourgeois, C.A. Brock, W.H. Brune, J.W. Budney, T.P. Bui, A. Butler, P. Campuzano-Jost, C.S. Chang, M. Chin, R. Commane, G. Correa, J.D. Crounse, P. D. Cullis, B.C. Daube, D.A. Day, J.M. Dean-Day, J.E. Dibb, J.P. DiGangi, G.S. Diskin, M. Dollner, J.W. Elkins, F. Erdesz, A.M. Fiore, C.M. Flynn, K.D. Froyd, D.W. Gesler, S.R. Hall, T.F. Hanisco, R.A. Hannun, A.J. Hills, E.J. Hintsa, A. Hoffman, R.S. Hornbrook, L.G. Huey, S. Hughes, J.L. Jimenez, B.J. Johnson, J.M. Katich, R.F. Keeling, M.J. Kim, A. Kupc, L.R. Lait, J.-F. Lamarque, J. Liu, K. McKain, R.J. Mclaughlin, S. Meinardi, D.O. Miller, S.A. Montzka, F.L. Moore, E.J. Morgan, D.M. Murphy, L.T. Murray, B.A. Nault, J.A. Neuman, P.A. Newman, J.M. Nicely, X. Pan, W. Paplawsky, J. Peischl, M.J. Prather, D.J. Price, E.A. Ray, J.M. Reeves, M. Richardson, A.W. Rollins, K.H. Rosenlof, T.B. Ryerson, E. Scheuer, G.P. Schill, J.C. Schroder, J.P. Schwarz, J.M. St.Clair, S.D. Steenrod, B.B. Stephens, S.A. Strode, C. Sweeney, D. Tanner, A.P. Teng, A.B. Thames, C.R. Thompson, K. Ullmann, P.R. Veres, N. Vieznor, N.L. Wagner, A. Watt, R. Weber, B.B. Weinzierl, P.O. Wennberg, C.J. Williamson, J.C. Wilson, G.M. Wolfe, C.T. Woods, and L.H. Zeng. 2018. ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1581