Skip to main content
ORNL DAAC HomeNASA Home

DAAC Home > Get Data > Regional/Global > Net Primary Productivity (NPP) > Publication List

Publications Citing NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-data Intercomparison, R2

The following 28 publications cited the product NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-data Intercomparison, R2.

Year Citation
2017 Rabin, S. S.; Melton, J. R.; Lasslop, G.; Bachelet, D.; Forrest, M.; Hantson, S.; Kaplan, J. O.; Li, F.; Mangeon, S.; Ward, D. S.; Yue, C.; Arora, V. K.; Hickler, T.; Kloster, S.; Knorr, W.; Nieradzik, L.; Spessa, A.; Folberth, G. A.; Sheehan, T.; Voulgar (2017) The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions.Geosci. Model Dev.. 10(3): 1175-1197. http://dx.doi.org/10.5194/gmd-10-1175-2017
2016 Alton, Paul B.; (2016) The sensitivity of models of gross primary productivity to meteorological and leaf area forcing: A comparison between a Penman–Monteith ecophysiological approach and the MODIS Light-Use Efficiency algorithm.Agricultural and Forest Meteorology. 218-219(): 11-24. http://dx.doi.org/10.1016/j.agrformet.2015.11.010
2016 Lu, Yaojie;Duursma, Remko A.;Medlyn, Belinda E.; (2016) Optimal stomatal behaviour under stochastic rainfall.Journal of Theoretical Biology. 394(): 160-171. http://dx.doi.org/10.1016/j.jtbi.2016.01.003
2016 Steinacher, M.;Joos, F.; (2016) Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble.Biogeosciences. 13(4): 1071-1103. http://dx.doi.org/10.5194/bg-13-1071-2016
2015 Cleveland, Cory C.;Taylor, Philip;Chadwick, K. Dana;Dahlin, Kyla;Doughty, Christopher E.;Malhi, Yadvinder;Smith, W. Kolby;Sullivan, Benjamin W.;Wieder, William R.;Townsend, Alan R.; (2015) A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production.Global Biogeochemical Cycles. 29(5): 626-644. http://dx.doi.org/10.1002/2014GB005022
2015 Pacifico, F.; Folberth, G. A.; Sitch, S.; Haywood, J. M.; Rizzo, L. V.; Malavelle, F. F.; Artaxo, P. (2015). Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study, Atmos. Chem. Phys., 15 (5). http://dx.doi.org/10.5194/acp-15-2791-2015
2014 Forzieri, Giovanni; Feyen, Luc; Cescatti, Alessandro and Vivoni, Enrique R. (2014) Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America. Journal of Geophysical Research: Biogeosciences. 119(10): 2014JG002710. . http://dx.doi.org/10.1002/2014JG002710
2014 Hararuk, Oleksandra;Xia, Jianyang;Luo, Yiqi; (2014) Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. Journal of Geophysical Research: Biogeosciences. 119 (3): 403-417. http://dx.doi.org/10.1002/2013JG002535
2014 Michaletz, Sean T.; Cheng, Dongliang; Kerkhoff, Andrew J. and Enquist, Brian J. (2014) Convergence of terrestrial plant production across global climate gradients. Nature. advance online publication. . http://dx.doi.org/10.1038/nature13470
2014 Oleksandra Hararuk (2014) Improving Global Carbon Cycle Models with Observations.University of Oklahoma, Graduate College. A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the Degree of Doctor of Philosophy . http://dx.doi.org/10.1038/nature13470
2014 Zhang, W.; Jansson, C.; Miller, P. A.; Smith, B. and Samuelsson, P. (2014) Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics. Biogeosciences. 11(19): 5503-5519. . http://dx.doi.org/10.5194/bg-11-5503-2014
2013 Alton P.B.; (2013) From site-level to global simulation: Reconciling carbon, water and energy fluxes over different spatial scales using a process-based ecophysiological land-surface model. Agricultural and Forest Meteorology. 176 (0): 111-124. http://dx.doi.org/10.1016/j.agrformet.2013.03.010
2013 Smith M.J., Purves, D. W., Vanderwel, M. C., Lyutsarev, V., Emmott, S.; (2013) The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties. Biogeosciences. 10 (1): 583-606. http://dx.doi.org/10.5194/bg-10-583-2013
2012 Nayak, R., Patel, N., & Dadhwal, V.; (2012). Inter-annual variability and climate control of terrestrial net primary productivity over India. International Journal of Climatology. 33 (1): 132-142. http://dx.doi.org/10.1002/joc.3414
2011 Alton, Paul B., Bodin, Per E,; (2011) Model Estimates of the Land and Ocean Contributions to Biospheric Carbon and Water Fluxes Using MODIS Satellite Data. Journal of Climate. 24 (14): 3558-3574. ISBN: 0894-8755.. http://dx.doi.org/10.1175/2011JCLI3957.1
2011 Hemming, Deborah., Betts, Richard., Collins, Matthew.; (2011). Sensitivity and uncertainty of modelled terrestrial net primary productivity to doubled CO2 and associated climate change for a relatively large perturbed physics ensemble. Agricultural and Forest Meteorology. 170 (0): 79-88. http://dx.doi.org/10.1016/j.agrformet.2011.10.016
2011 Huston, Michael A., Wolverton, Steve.; (2011). Regulation of animal size by eNPP, Bergmann's rule, and related phenomena. Ecological Monographs 81 (3): 349-405. ISBN: 0012-9615.. http://dx.doi.org/10.1890/10-1523.1
2010 Peichl, M., Brodeur, J. J., Khomik, M., Arain, M. A.; (2010). Biometric and eddy-covariance based estimates of carbon fluxes in an age-sequence of temperate pine forests. Agricultural and Forest Meteorology. 150 (7-8): 952-965. ISBN: 0168-1923.. http://dx.doi.org/10.1016/j.agrformet.2010.03.002
2009 Randerson, JT.,Hoffmanw, FM.,Thorntonz, PE.,Mahowald, NM.,Lindsayz, K.,Leez, Y.,Nevison, CD.,Doney, SC.,Bonanz, G.,St ckliww, R.; (2009). Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Global Change Biology. 15 (10): 2462-2484. http://dx.doi.org/10.1111/j.1365-2486.2009.01912.x
2008 Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K., Olson, R.; (2008). GLOBAL POTENTIAL NET PRIMARY PRODUCTION PREDICTED FROM VEGETATION CLASS, PRECIPITATION, AND TEMPERATURE. Ecology. 89 (8): 2117-2126. http://dx.doi.org/10.1890/07-0850.1
2007 Luyssaert, S., I. Inglima, et al.; (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology. 13 (12): 2509-2537. http://dx.doi.org/10.1111/j.1365-2486.2007.01439.x
2007 Magnani, F., M. Mencuccini, et al.; (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature. 447(7146): 849-851. http://dx.doi.org/10.1038/nature05847
2006 Hickler, T., I.C. Prentice, B. Smith, M.T. Sykes, and S. Zaehle; (2006) Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology and Biogeography. 15 (0): 567-577. http://dx.doi.org/10.1111/j.1466-822x.2006.00254.x
2006 Naegler, T., and I. Levin.; (2006). Closing the global radiocarbon budget 1945-2005. Journal of Geophysical Research-Atmospheres. 111 (D12). http://dx.doi.org/10.1029/2005JD006758
2006 Van der Werf, G.R., J.T. Randerson, L. Giglio, G. J. Collatz, P.S. Kasibhatla, and A.F. Arellano, Jr.; (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics. 6 (11): 3423-3441. http://dx.doi.org/10.5194/acp-6-3423-2006
2006 Zhao, M.; (2006). Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Journal of Geophysical Research. 111 (G1): . http://dx.doi.org/10.1029/2004JG000004
2003 Cuntz, M.; Ciais, P.; Hoffmann, G.; Knorr, W.; (2003). A comprehensive global three-dimensional model of delta 18O in atmospheric CO2: 1. Validation of surface processes. Journal of Geophysical Research-Atmospheres. 108 (D17). http://dx.doi.org/10.1029/2002JD003153
2003 Todorovski, Ljupco; Džeroski, Sašo; Langley, Pat; Potter, Christopher; (2003). Using equation discovery to revise an Earth ecosystem model of the carbon net production. Ecological Modelling. 170 (2-3): 141-154. http://dx.doi.org/10.1016/S0304-3800(03)00222-9