

Understanding the relative contributions of sediment delivery and plants production to resilience of the Mississippi River Delta to sea level rise PI Marc Simard, Co-PI Cathleen Jones Jet Propulsion Laboratory, California Institute of Technology

Solving pressing Earth system Science issues: NASA's Earth Venture Suborbital – 3 (NASA's Science Mission Directorate/Earth Science Division)

 ACTIVATE: Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment

DCOTSS:

Dynamics and Chemistry of the Summer Stratosphere

• Delta-X:

Resilience of River Deltas

igodol

Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms

• S-MODE:

IMPACTS:

Submesoscale Ocean Dynamics and Vertical Transport

California Institute of Technology

Delta-X goal:

To predict which parts of the Mississippi River Delta will keep up with sea level rise and which part will drown.

To achieve that goal, Delta-X develops a model that simulates the two processes that contribute to soil elevation:

- 1. Sediment delivery to wetlands and;
- 2. Organic matter produced by vegetation.

12 Co-Investigators from 8 different institutions from 6 coastal states

- California:
 - Jet Propulsion Laboratory, California Institute of Technology (M. Simard, C. Jones, E. Rodriguez, D. Thompson)
 - Caltech (M. Lamb)
- Louisiana: Louisiana State University, Baton Rouge (R. Twilley)
- Texas: University of Texas, Austin (P. Passalacqua)
- Florida: Florida International University (E. Castañeda)
- North Carolina: University of North Carolina (T. Pavelsky)
- Massachusets:
 - Boston University (C. Fichot & S. Fagherazzi)
 - Woodshole Oceanographic institution (L. Giosan)

Earth Venture Suborbital 3 Delta-X

The Delta-X Framework Implementation

Airborne Remote Sensing Instruments

UAVSAR (for NISAR)

- L- band Radar, full-pol, 6m
- Shallow bathymetry,
- Above Ground Biomass AGB
- Water level changes within marshes
- Water surface velocity

AirSWOT (for SWOT)

- Ka-band radar interferometer
- Centimeter-level open water surface elevation and surface slope

AVIRIS-NG (for SBG and more)

- Imaging spectroscopy (425 bands)
 - 380-2510nm, 5nm
- High spatial resolution (~4m)
- Vegetation species and structure
 Water quality

California Institute of Technology

Delta-X Airborne Campaign

- Spring campaign 2021: March 21st April 22nd (including in situ)
 - 3/27/21 4/6/21 AVIRIS-NG flights
 - 3/26 4/18 AirSWOT flights
 - 3/27 4/18 UAVSAR flights.
- Fall campaign 2021: August 16th September 26th (including in situ)
 - 8/21/21-9/12/21 AirSWOT flights
 - 9/1/21-9/12/21 UAVSAR flights
 - 8/18/21-8/25/2021 AVIRISNG flights
- Pre-Delta-X campaigns
 - May 2015 (Spring)
 - October 2016 (Fall)

15k ft

FlightAware

NEW 08:44AM CD1

01:44PM UTC

Example flight patterns: April 1st

2

400

12:23PM CDT

Location of the 7 Delta-X Intensive Study Sites

Diversity of Vegetation Types

Hydrogeomorphic zones are defined from ground elevation with respect to mean water level. These zones control hydrology and vegetation type.

Vegetation and soil sampling

Soil Accretion

Vegetation Structure

Water Quality And Dynamics

 View
 View

 View
 View

 View
 View

Water Flow (ADCP)

Water Flow, turbity, grain size distribution

41 km

Shoal

Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google Earth

Repeat Radar Measurements as tides come in-and-out of the wetlands

New Orleans

Kenner

Morgan City

Houma

Thibodaux

Grand Isle

© 2021 Google Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google Earth

0)

(3)

Captured tide propagation around high, low and receding stages simultaneously in channels & wetlands

New Orleans

Kenne

Grand Isle

© 2021 Google Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Thibodaux

Google Earth

organ City

© 2021 Google Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Flight Plans: AVIRIS-NG, AirSWOT, UAVSAR

UAVSAR (white, yellow, green boxes) and AirSWOT (orange boxes) flight plans. Each UAVSAR box represents the area this is imaged 5-8 times during each flight. AirSWOT and UAVSAR fly at the same time in 9 (6) flights during the Fall campaign. Yellow and red markers are Delta-X water level gauges for hydrodynamic modeling and AirSWOT and UAVSAR cal/val. Small lozenges are CRMS stations (water level, weather, plant data) Not all field instrumentation / sites are shown.

Summary: Remote Sensing Measurements

0 0.5 1 1.5 2 2.5 Time since first acquisition [hr]

Flight during rising and falling tide to capture water seeping through wetlands and channel network

Water surface slope measurement from AirSWOT (1cm/km)

Total Suspended Sediments from AVIRISNG vs in situ accretion rates within 20mg/L

Hydrodynamic Models (Atchafalaya Basin)

Model calibration and validation

Observed (UAVSAR and AirSWOT) and modeled (U. Boston and U. Texas) water level changes.

Public Access to All Data and Models

- Last in situ field campaign in Fall 2023 to validate model.
- Delivery of L4 calibrated hydrodynamic models (September 25th, 2023)
- End of project April 2025

Delta-x Agenda: Open Data Workshop

- 10:00 10:15 am Introduction Marc Simard
- 10:15 10:50 am Data Access Matt Donovan, Yaxing Wei
- 10:50 11:00 am Aboveground Biomass Daniel Jensen
- 11:00 11:10 am Water Level Change Talib Oliver Cabrera
- 11:10 11:20 am Water Level Michael Denbina
- 11:20 11:30 am Sediment Accretion Robert Twilley, Andre Rovai
- 11:30 11:40 am Vegetation Data Edward Castaneda, Elena Solohin
- 11:40 11:50 am DEM Alexandra Christensen
- 11:50 12:00 pm Modeling Hydrodynamics Using ANUGA Paola Passalacqua, Antoine Soloy
- 12:00 12:20 pm Discussions & Question

